Archana S. Nagaraja
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Archana S. Nagaraja.
Nature Communications | 2013
Guillermo N. Armaiz-Pena; Julie K. Allen; Anthony Cruz; Rebecca L. Stone; Alpa M. Nick; Yvonne G. Lin; Liz Y. Han; Lingegowda S. Mangala; Gabriel J. Villares; Pablo Vivas-Mejia; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Kshipra M. Gharpure; Zheng Wu; Robert D. English; Kizhake V. Soman; Mian M.K. Shahzad; Maya Zigler; Michael T. Deavers; Alexander Zien; Theodoros Soldatos; David B. Jackson; John E. Wiktorowicz; Madeline Torres-Lugo; Tom Young; Koen De Geest; Gary E. Gallick; Menashe Bar-Eli; Gabriel Lopez-Berestein; Steve W. Cole
Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment.
Nature Reviews Cancer | 2015
Steven W. Cole; Archana S. Nagaraja; Susan K. Lutgendorf; Paige A. Green; Anil K. Sood
The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programmes that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial–mesenchymal transition and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and haematopoietic differentiation programmes. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacological strategies to inhibit cancer progression in vivo.
Nature Communications | 2014
Rajesha Rupaimoole; Sherry Y. Wu; Sunila Pradeep; Cristina Ivan; Chad V. Pecot; Kshipra M. Gharpure; Archana S. Nagaraja; Guillermo N. Armaiz-Pena; Michael McGuire; Behrouz Zand; Heather J. Dalton; Justyna Filant; Justin Bottsford Miller; Chunhua Lu; Nouara C. Sadaoui; Lingegowda S. Mangala; Morgan Taylor; Twan van den Beucken; Elizabeth Koch; Cristian Rodriguez-Aguayo; Li Huang; Menashe Bar-Eli; Bradly G. Wouters; Milan Radovich; Mircea Ivan; George A. Calin; Wei Zhang; Gabriel Lopez-Berestein; Anil K. Sood
Cancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumour progression. We show that hypoxia-mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA maturation in cells under hypoxic conditions. At a functional level, this phenomenon results in increased cancer progression in vitro and in vivo, and data from patient samples are suggestive of miRNA biogenesis downregulation in hypoxic tumours. Rescue of Drosha by siRNAs targeting ETS1/ELK1 in vivo results in significant tumour regression. These findings provide a new link in the mechanistic understanding of global miRNA downregulation in the tumour microenvironment. MicroRNAs play important roles in the maintenance of cellular homeostasis through the post-transcriptional regulation of gene expression. Here, the authors implicate loss of the miRNA biogenesis factor Drosha and altered miRNA maturation in tumour progression under hypoxic conditions.
Cell Reports | 2015
Rajesha Rupaimoole; Jaehyuk Lee; Monika Haemmerle; Hui Ling; Rebecca A. Previs; Sunila Pradeep; Sherry Y. Wu; Cristina Ivan; Manuela Ferracin; Jennifer B. Dennison; Niki Zacharias Millward; Archana S. Nagaraja; Kshipra M. Gharpure; Michael McGuire; Nidhin Sam; Guillermo N. Armaiz-Pena; Nouara C. Sadaoui; Cristian Rodriguez-Aguayo; George A. Calin; Ronny Drapkin; Jeffery Kovacs; Gordon B. Mills; Wei Zhang; Gabriel Lopez-Berestein; Pratip Bhattacharya; Anil K. Sood
Long noncoding RNAs (lncRNAs) significantly influence the development and regulation of genome expression in cells. Here, we demonstrate the role of lncRNA ceruloplasmin (NRCP) in cancer metabolism and elucidate functional effects leading to increased tumor progression. NRCP was highly upregulated in ovarian tumors, and knockdown of NRCP resulted in significantly increased apoptosis, decreased cell proliferation, and decreased glycolysis compared with control cancer cells. In an orthotopic mouse model of ovarian cancer, siNRCP delivered via a liposomal carrier significantly reduced tumor growth compared with control treatment. We identified NRCP as an intermediate binding partner between STAT1 and RNA polymerase II, leading to increased expression of downstream target genes such as glucose-6-phosphate isomerase. Collectively, we report a previously unrecognized role of the lncRNA NRCP in modulating cancer metabolism. As demonstrated, DOPC nanoparticle-incorporated siRNA-mediated silencing of this lncRNA in vivo provides therapeutic avenue toward modulating lncRNAs in cancer.
Journal of Clinical Investigation | 2013
Myrthala Moreno-Smith; Jyotsnabaran Halder; Paul S. Meltzer; Tamas A. Gonda; Lingegowda S. Mangala; Rajesha Rupaimoole; Chunhua Lu; Archana S. Nagaraja; Kshipra M. Gharpure; Yu Kang; Cristian Rodriguez-Aguayo; Pablo Vivas-Mejia; Behrouz Zand; Rosemarie Schmandt; Hua Wang; Robert R. Langley; Nicholas B. Jennings; Cristina Ivan; Jeremy E. Coffin; Guillermo N. Armaiz; Justin Bottsford-Miller; Sang Bae Kim; Margaret S. Halleck; Mary J.C. Hendrix; William Bornman; Menashe Bar-Eli; Ju Seog Lee; Zahid H. Siddik; Gabriel Lopez-Berestein; Anil K. Sood
Platinum compounds display clinical activity against a wide variety of solid tumors; however, resistance to these agents is a major limitation in cancer therapy. Reduced platinum uptake and increased platinum export are examples of resistance mechanisms that limit the extent of DNA damage. Here, we report the discovery and characterization of the role of ATP11B, a P-type ATPase membrane protein, in cisplatin resistance. We found that ATP11B expression was correlated with higher tumor grade in human ovarian cancer samples and with cisplatin resistance in human ovarian cancer cell lines. ATP11B gene silencing restored the sensitivity of ovarian cancer cell lines to cisplatin in vitro. Combined therapy of cisplatin and ATP11B-targeted siRNA significantly decreased cancer growth in mice bearing ovarian tumors derived from cisplatin-sensitive and -resistant cells. In vitro mechanistic studies on cellular platinum content and cisplatin efflux kinetics indicated that ATP11B enhances the export of cisplatin from cells. The colocalization of ATP11B with fluorescent cisplatin and with vesicular trafficking proteins, such as syntaxin-6 (STX6) and vesicular-associated membrane protein 4 (VAMP4), strongly suggests that ATP11B contributes to secretory vesicular transport of cisplatin from Golgi to plasma membrane. In conclusion, inhibition of ATP11B expression could serve as a therapeutic strategy to overcome cisplatin resistance.
Nature Communications | 2016
Sherry Y. Wu; Rajesha Rupaimoole; Fangrong Shen; Sunila Pradeep; Chad V. Pecot; Cristina Ivan; Archana S. Nagaraja; Kshipra M. Gharpure; Elizabeth Pham; Hiroto Hatakeyama; Michael McGuire; Monika Haemmerle; Viviana Vidal-Anaya; Courtney Olsen; Cristian Rodriguez-Aguayo; Justyna Filant; Ehsan A. Ehsanipour; Shelley M. Herbrich; Sourindra Maiti; Li Huang; Ji Hoon Kim; Xinna Zhang; Hee Dong Han; Guillermo N. Armaiz-Pena; Elena G. Seviour; Susan L. Tucker; Min Zhang; Da Yang; Laurence J.N. Cooper; Rouba Ali-Fehmi
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.
Oncogene | 2016
Rajesha Rupaimoole; Cristina Ivan; Da Yang; Kshipra M. Gharpure; Sherry Y. Wu; Chad V. Pecot; Rebecca A. Previs; Archana S. Nagaraja; Guillermo N. Armaiz-Pena; Michael McGuire; Sunila Pradeep; Lingegowda S. Mangala; Cristian Rodriguez-Aguayo; Li Huang; Menashe Bar-Eli; Wei Zhang; Gabriel Lopez-Berestein; George A. Calin; Anil K. Sood
MicroRNAs (miRNAs) are small RNA molecules that affect cellular processes by controlling gene expression. Recent studies have shown that hypoxia downregulates Drosha and Dicer, key enzymes in miRNA biogenesis, causing a decreased pool of miRNAs in cancer and resulting in increased tumor growth and metastasis. Here we demonstrate a previously unrecognized mechanism by which hypoxia downregulates Dicer. We found that miR-630, which is upregulated under hypoxic conditions, targets and downregulates Dicer expression. In an orthotopic mouse model of ovarian cancer, delivery of miR-630 using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) nanoliposomes resulted in increased tumor growth and metastasis, and decreased Dicer expression. Treatment with the combination of anti-miR-630 and anti-vascular endothelial growth factor antibody in mice resulted in rescue of Dicer expression and significantly decreased tumor growth and metastasis. These results indicate that targeting miR-630 is a promising approach to overcome Dicer deregulation in cancer. As demonstrated in the study, use of DOPC nanoliposomes for anti-miR delivery serves as a better alternative approach to cell line-based overexpression of sense or antisense miRNAs, while avoiding potential in vitro selection effects. Findings from this study provide a new understanding of miRNA biogenesis downregulation observed under hypoxia and suggest therapeutic avenues to target this dysregulation in cancer.
Molecular Cancer Therapeutics | 2014
Chad V. Pecot; Sherry Y. Wu; Seth Bellister; Justyna Filant; Rajesha Rupaimoole; Takeshi Hisamatsu; Rajat Bhattacharya; Anshumaan Maharaj; Salma H. Azam; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Maria Pia Morelli; Kshipra M. Gharpure; Trent A. Waugh; Vianey Gonzalez-Villasana; Behrouz Zand; Heather J. Dalton; Scott Kopetz; Gabriel Lopez-Berestein; Lee M. Ellis; Anil K. Sood
Despite being among the most common oncogenes in human cancer, to date, there are no effective clinical options for inhibiting KRAS activity. We investigated whether systemically delivered KRAS siRNAs have therapeutic potential in KRAS-mutated cancer models. We identified KRAS siRNA sequences with notable potency in knocking down KRAS expression. Using lung and colon adenocarcinoma cell lines, we assessed antiproliferative effects of KRAS silencing in vitro. For in vivo experiments, we used a nanoliposomal delivery platform, DOPC, for systemic delivery of siRNAs. Various lung and colon cancer models were used to determine efficacy of systemic KRAS siRNA based on tumor growth, development of metastasis, and downstream signaling. KRAS siRNA sequences induced >90% knockdown of KRAS expression, significantly reducing viability in mutant cell lines. In the lung cancer model, KRAS siRNA treatment demonstrated significant reductions in primary tumor growth and distant metastatic disease, while the addition of CDDP was not additive. Significant reductions in Ki-67 indices were seen in all treatment groups, whereas significant increases in caspase-3 activity were only seen in the CDDP treatment groups. In the colon cancer model, KRAS siRNA reduced tumor KRAS and pERK expression. KRAS siRNAs significantly reduced HCP1 subcutaneous tumor growth, as well as outgrowth of liver metastases. Our studies demonstrate a proof-of-concept approach to therapeutic KRAS targeting using nanoparticle delivery of siRNA. This study highlights the potential translational impact of therapeutic RNA interference, which may have broad applications in oncology, especially for traditional “undruggable” targets. Mol Cancer Ther; 13(12); 2876–85. ©2014 AACR.
Oncogene | 2016
Archana S. Nagaraja; Piotr L. Dorniak; Nouara C. Sadaoui; Yu Kang; Tan Lin; Guillermo N. Armaiz-Pena; Sherry Y. Wu; Rajesha Rupaimoole; Julie K. Allen; Kshipra M. Gharpure; Sunila Pradeep; Behrouz Zand; Rebecca A. Previs; Jean M. Hansen; Cristina Ivan; Cristian Rodriguez-Aguayo; Peiying Yang; Gabriel Lopez-Berestein; Susan K. Lutgendorf; Steve W. Cole; Anil K. Sood
Adrenergic stimulation adversely affects tumor growth and metastasis, but the underlying mechanisms are not well understood. Here, we uncovered a novel mechanism by which catecholamines induce inflammation by increasing prostaglandin E2 (PGE2) levels in ovarian cancer cells. Metabolic changes in tumors isolated from patients with depression and mice subjected to restraint stress showed elevated PGE2 levels. Increased metabolites, PTGS2 and PTGES protein levels were found in Skov3-ip1 and HeyA8 cells treated with norepinephrine (NE), and these changes were shown to be mediated by ADRB2 receptor signaling. Silencing PTGS2 resulted in significantly decreased migration and invasion in ovarian cancer cells in the presence of NE and decreased tumor burden and metastasis in restraint stress orthotopic models. In human ovarian cancer samples, concurrent increased ADRB2, PTGS2 and PTGES expression was associated with reduced overall and progression-free patient survival. In conclusion, increased adrenergic stimulation results in increased PGE2 synthesis via ADRB2–Nf-kB–PTGS2 axis, which drives tumor growth and metastasis.
Journal of Clinical Investigation | 2016
Monika Haemmerle; Justin Bottsford-Miller; Sunila Pradeep; Morgan Taylor; Hyun Jin Choi; Jean M. Hansen; Heather J. Dalton; Rebecca L. Stone; Min Soon Cho; Alpa M. Nick; Archana S. Nagaraja; Tony Gutschner; Kshipra M. Gharpure; Lingegowda S. Mangala; Rajesha Rupaimoole; Hee Dong Han; Behrouz Zand; Guillermo N. Armaiz-Pena; Sherry Y. Wu; Chad V. Pecot; Alan R. Burns; Gabriel Lopez-Berestein; Vahid Afshar-Kharghan; Anil K. Sood
Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management.