Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Archie R. Portis is active.

Publication


Featured researches published by Archie R. Portis.


Chemical Reviews | 2013

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation

Aaron M. Appel; John E. Bercaw; Andrew B. Bocarsly; Holger Dobbek; Daniel L. DuBois; Michel Dupuis; James G. Ferry; Etsuko Fujita; Russ Hille; Paul J. A. Kenis; Cheryl A. Kerfeld; Robert H. Morris; Charles H. F. Peden; Archie R. Portis; Stephen W. Ragsdale; Thomas B. Rauchfuss; Joost N. H. Reek; Lance C. Seefeldt; Rudolf K. Thauer; Grover L. Waldrop

Two major energy-related problems confront the world in the nnext 50 years. First, increased worldwide competition for ngradually depleting fossil fuel reserves (derived from past nphotosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform

Ning Zhang; Russell P. Kallis; Robert G. Ewy; Archie R. Portis

The light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vivo requires the presence of Rubisco activase, a nuclear-encoded chloroplast protein that consists of two isoforms arising from alternative splicing in most plants. We examined the function of each isoform by characterizing Rubisco activation in transgenic Arabidopsis plants that express only one or both isoforms, as compared with the wild type. In plants expressing only the shorter isoform, Rubisco activity was as high as in the wild type under saturating light, but the activity was not down-regulated at intensities limiting for photosynthesis. In contrast, in plants expressing only the longer isoform, Rubisco activity was down-regulated at limiting light, but the activity was slightly lower and increased much more slowly at saturating light intensities as compared with the wild type. Light regulation of Rubisco similar to that in the wild-type plants was observed in the progeny of a genetic cross of these two transformants in which both isoforms were again present. When the capacity to redox regulate the activity of the larger activase isoform was eliminated by replacement of the critical cysteine residues in the carboxyl-terminal extension unique to this isoform, Rubisco activity in saturating light was similar to the wild type, but the ability of the larger isoform to down-regulate Rubisco activity at limiting light intensities in transgenic plants was almost abolished. These results indicate that the light modulation of Rubisco under limiting light is mainly due to the ability to regulate the activity of Rubisco activase by redox changes in the stroma.


Photosynthesis Research | 2007

Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective

Archie R. Portis; Martin A. J. Parry

Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.


Archives of Biochemistry and Biophysics | 1990

Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light

Gretchen F. Sassenrath; Donald R. Ort; Archie R. Portis

Photosynthesis in domestic tomato (Lycopersicon esculentum L.) is highly sensitive to low temperature, particularly when accompanied by high light. Since previous studies have established that the inhibited plants retain photosynthetic electron transfer and ATP formation competence, we sought to identify specific steps in the photosynthetic carbon reduction pathway that could account for the lost photosynthetic capacity. Measurements of steady-state photosynthetic metabolite pool sizes showed an accumulation of fructose 1,6-bisphosphate and sedohepulose 1,7-bisphosphate following chilling in the light. Measurements of in vivo turnover rates of the metabolite pools accompanied by direct determinations of enzymatic activity showed that the capacity of the stromal bisphosphatases was substantially reduced following chilling in the light and was the cause of the bisphosphate accumulation. The time course of the loss of phosphatase activity closely mimicked that of the inhibition of net photosynthesis, further indicating that impaired phosphatase function is the underlying cause of the sensitivity of photosynthesis in tomato to light and chilling. Fructose 1,6-bisphosphatase extracted from inhibited tomato plants could be fully activated in the presence of dithiothreitol, indicating that chilling in the light disrupts the normal, thioredoxin-dependent, activation pathway of the stromal bisphosphatases. This disruption could involve a change in the redox potential of the functional disulfide on the phosphatases.


Plant Physiology | 1997

Heat Denaturation Profiles of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) and Rubisco Activase and the Inability of Rubisco Activase to Restore Activity of Heat-Denatured Rubisco.

Nancy A. Eckardt; Archie R. Portis

We compared the heat-denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and further examined the ability of Rubisco activase to restore the activity of heat-denatured Rubisco originally reported (E. Sanchez de Jimenez, L. Medrano, and E. Martinez-Barajas [1995] Biochemistry 34: 2826–2831). Rubisco was heat-treated in both the carbamylated and uncarbamylated forms and in the presence and absence of 10 mM dithiothreitol (DTT). Both forms were highly resistant to heat denaturation and further protection was gained in the presence of DTT. A 50% loss in total activity occurred after 1 h at 57.5 and 55.2[deg]C for uncarbamylated Rubisco and at 60.2 and 59.6[deg]C for carbamylated Rubisco, in each case with and without DTT, respectively. In contrast, Rubisco activase lost 50% activity after only 5 min at 33[deg]C and the loss in activity was not affected by the presence of Rubisco. When Rubisco, heat-denatured to various extents, was incubated at room temperature with Rubisco activase or bovine serum albumin as a control, Rubisco activase did not have a significant specific ability to restore Rubisco activity. We conclude that Rubisco activase alone does not have the ability to restore the activity of heat-denatured Rubisco and is unlikely to protect or restore Rubisco activity from heat denaturation in vivo because it is more heat-labile than Rubisco.


Photosynthesis Research | 2006

Kinetic Analysis of the Slow Inactivation of Rubisco During Catalysis: Effects of Temperature, O2 and Mg++

Kangmin Kim; Archie R. Portis

The effect of temperature, O2 and Mg++ on the kinetic characteristics of the slow inactivation (fallover) of Rubisco isolated from spinach (Spinacia oleracea L.) was determined. Comparing 25 and 45xa0°C, the rate of activity decline of Rubisco increased by 20-fold, but the final ratio of steady state to initial activity increased from 0.38 to 0.62, respectively. Low CO2 increased the extent of fallover but only caused a marginal increase in fallover rate in agreement with results reported previously. In contrast, increased O2 during catalysis significantly increased only the fallover rate. Low Mg++ greatly increased the fallover of Rubisco both in rate and extent. Rubisco carbamylation was assayed using a new separation technique and it revealed that a loss of carbamylation largely accounted for the increased fallover observed with low Mg++. In conclusion, Rubisco fallover is facilitated by high temperature, low concentration of CO2 or Mg++, and high O2. The physiological importance of these factors in affecting Rubisco fallover and contributing to photosynthetic inhibition at high temperatures in planta are discussed.


Plant Physiology | 1997

ATP Hydrolysis Activity and Polymerization State of Ribulose-1,5-Bisphosphate Carboxylase Oxygenase Activase (Do the Effects of Mg2+, K+, and Activase Concentrations Indicate a Functional Similarity to Actin?)

Ross McC. Lilley; Archie R. Portis

The ATPase activity and fluoresence of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activase were determined over a range of MgCl2, KCl, and activase concentrations. Both salts promoted ADP release from ATP and intrinsic fluorescence enhancement by adenosine 5[prime]-[[gamma]-thio] triphosphate, but Mg2+ was about 10 times more effective than K+. ATPase and fluorescence enhancement both increased from zero to saturation within the same Mg2+ and K+ concentration ranges. At saturating concentrations (5 mM Mg2+ and 22 mM K+), the specific activity of ATPase (turnover time, about 1 s) and specific intrinsic fluorescence enhancement were maximal and unaffected by activase concentration above 1 [mu]M activase; below 1 [mu]M activase, both decreased sharply. These responses are remarkably similar to the behavior of actin. Intrinsic fluorescence enhancement of Rubisco activase reflects the extent of polymerization, showing that the smaller oligomer or monomer present in low-salt and activase concentrations is inactive in ATP hydrolysis. However, quenching of 1-anilinonapthaline-8-sulfonate fluorescence revealed that ADP and adenosine 5[prime]-[[gamma]-thio] triphosphate bind equally well to activase at low- and high-salt concentrations. This is consistent with an actin-like mechanism requiring a dynamic equilibrium between monomer and oligomers for ATP hydrolysis. The specific activation rate of substrate-bound decarbamylated Rubisco decreased at activase concentrations below 1 [mu]M. This suggests that a large oligomeric form of activase, rather than a monomer, interacts with Rubisco when performing the release of bound ribulose-1,5-bisphosphate from the inactive enzyme.


Journal of Biological Chemistry | 2006

Increased Sensitivity of Oxidized Large Isoform of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase to ADP Inhibition Is Due to an Interaction between Its Carboxyl Extension and Nucleotide-binding Pocket

Dafu Wang; Archie R. Portis

In Arabidopsis, oxidation of the large (46-kDa) isoform activase to form a disulfide bond in the C-terminal extension (C-extension) significantly increases its ADP sensitivity for both ATP hydrolysis and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, thereby decreasing both activities at physiological ratios of ADP/ATP. In this study, we demonstrate that the C-extension of the oxidized large activase isoform can be cross-linked with regions containing residues that contribute to the nucleotide-binding pocket, with a higher efficiency in the presence of ADP or the absence of nucleotides than with ATP. Coupled with measurements demonstrating a redox-dependent protease sensitivity of the C-extension and a lower ATP or adenosine 5′-O-(thiotriphosphate) (ATPγS) affinity of the oxidized large isoform than either the reduced form or the smaller isoform, the results suggest that the C-extension plays an inhibitory role in ATP hydrolysis, regulated by redox changes. In contrast, the ADP affinities of the small isoform and the reduced or oxidized large isoform were similar, which indicates that the C-extension selectively interferes with the proper binding of ATP, possibly by interfering with the coordination of the γ-phosphate. Furthermore, replacement of conserved, negatively charged residues (Asp390, Glu394, and Asp401) in the C-extension with alanine significantly reduced the sensitivities of the mutants to ADP inhibition, which suggests the involvement of electrostatic interactions between them and positively charged residues in or near the nucleotide-binding pocket. These studies provide new insights into the mechanism of redox regulation of activase by the C-extension in the large isoform.


Plant Physiology | 2007

A Novel Nucleus-Encoded Chloroplast Protein, PIFI, Is Involved in NAD(P)H Dehydrogenase Complex-Mediated Chlororespiratory Electron Transport in Arabidopsis

Dafu Wang; Archie R. Portis

A transient rise in chlorophyll fluorescence after turning off actinic light reflects nonphotochemical reduction of the plastoquinone (PQ) pool. This process is dependent on the activity of the chloroplast NAD(P)H dehydrogenase (NDH) complex, which mediates electron flow from stromal reductants to the PQ pool. In this study, we characterized an Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutant pifi (for postillumination chlorophyll fluorescence increase), which possesses an intact NDH complex, but lacks the NDH-dependent chlorophyll fluorescence increase after turning off actinic light. The nuclear gene PIFI (At3g15840) containing the T-DNA insertion encodes a chloroplast-targeted protein localized in the stroma and is annotated as a protein of unknown function. The pifi mutant exhibited a lower capacity for nonphotochemical quenching, but similar CO2 assimilation rates, photosystem II (PSII) quantum efficiencies (ΦPSII), and reduction levels of the primary electron acceptor of PSII (1 − qL) as compared with the wild type. The pifi mutant grows normally under optimal conditions, but exhibits greater sensitivity to photoinhibition and long-term mild heat stress than wild-type plants, which is consistent with lower capacity of nonphotochemical quenching. We conclude that PIFI is a novel component essential for NDH-mediated nonphotochemical reduction of the PQ pool in chlororespiratory electron transport.


FEBS Letters | 1987

Stimulation of thylakoid energization and ribulose-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves by methyl viologen

Michael E. Salvucci; Archie R. Portis; Ulrich Heber; William L. Ogren

The light responses of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (rubisco) activation and light scattering, a measure of the transthylakoid ΔpH, were found to be similar in Arabidopsis leaves. Methyl viologen lowered the light requirements for both activation and scattering, indicating that rubisco activation is related to thylakoid energization status. Nigericin inhibited rubisco activation in spinach protoplasts, providing further evidence for an association between rubisco activation and thylakoid energization. Light scattering and fluorescence quenching signals indicated an overenergization of the thylakoids in an Arabidopsis mutant defective in light activation of rubisco.

Collaboration


Dive into the Archie R. Portis's collaboration.

Top Co-Authors

Avatar

Michael E. Salvucci

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon P. Robinson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

T. John Andrews

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Aaron M. Appel

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. F. Peden

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge