Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arfon M. Smith is active.

Publication


Featured researches published by Arfon M. Smith.


The Astrophysical Journal | 2013

Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System

Megan E. Schwamb; Jerome A. Orosz; Joshua A. Carter; William F. Welsh; Debra A. Fischer; Guillermo Torres; Andrew W. Howard; Justin R. Crepp; William C. Keel; Chris J. Lintott; Nathan A. Kaib; Dirk Terrell; Robert Gagliano; Kian J. Jek; Michael Parrish; Arfon M. Smith; Stuart Lynn; Robert J. Simpson; Matthew J. Giguere; Kevin Schawinski

We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler data as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 ± 0.17 R_⊕ planet orbits outside the 20 day orbit of an eclipsing binary consisting of an F dwarf (1.734 ± 0.044 R_☉, 1.528 ± 0.087 M_☉) and M dwarf (0.378 ± 0.023 R_☉, 0.408 ± 0.024 M_☉). For the planet, we find an upper mass limit of 169 M_⊕ (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planets orbit, at ~1000 AU, a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey

Kyle W. Willett; Chris J. Lintott; Steven P. Bamford; Karen L. Masters; Brooke Simmons; Kevin R. V. Casteels; Edward M. Edmondson; L. Fortson; Sugata Kaviraj; William C. Keel; Thomas Melvin; Robert C. Nichol; M. Jordan Raddick; Kevin Schawinski; Robert J. Simpson; Ramin A. Skibba; Arfon M. Smith; Daniel Thomas

We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than 16 million morphological classifications of 304 122 galaxies drawn from the Sloan Digital Sky Survey (SDSS). Morphology is a powerful probe for quantifying a galaxys dynamical history; however, automatic classifications of morphology (either by computer analysis of images or by using other physical parameters as proxies) still have drawbacks when compared to visual inspection. The large number of images available in current surveys makes visual inspection of each galaxy impractical for individual astronomers. GZ2 uses classifications from volunteer citizen scientists to measure morphologies for all galaxies in the DR7 Legacy survey with mr > 17, in addition to deeper images from SDSS Stripe 82. While the original GZ2 project identified galaxies as early-types, late-types or mergers, GZ2 measures finer morphological features. These include bars, bulges and the shapes of edge-on disks, as well as quantifying the relative strengths of galactic bulges and spiral arms. This paper presents the full public data release for the project, including measures of accuracy and bias. The majority (≳90 per cent) of GZ2 classifications agree with those made by professional astronomers, especially for morphological T-types, strong bars and arm curvature. Both the raw and reduced data products can be obtained in electronic format at http://data.galaxyzoo.org.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy Zoo:bars in disc galaxies

Karen L. Masters; Robert C. Nichol; Ben Hoyle; Chris Lintott; Steven P. Bamford; Edward M. Edmondson; L. Fortson; William C. Keel; Kevin Schawinski; Arfon M. Smith; Daniel Thomas

We present first results from Galaxy Zoo 2, the second phase of the highly successful Galaxy Zoo project (http://www.galaxyzoo.org). Using a volume-limited sample of 13 665 disc galaxies (0.01 < z < 0.06 and Mr < −19.38), we study the fraction of galaxies with bars as a function of global galaxy properties like colour, luminosity and bulge prominence. Overall, 29.4 ± 0.5 per cent of galaxies in our sample have a bar, in excellent agreement with previous visually classified samples of galaxies (although this overall fraction is lower than that measured by automated bar-finding methods). We see a clear increase in the bar fraction with redder (g−r) colours, decreased luminosity and in galaxies with more prominent bulges, to the extent that over half of the red, bulge-dominated disc galaxies in our sample possess a bar. We see evidence for a colour bimodality for our sample of disc galaxies, with a ‘red sequence’ that is both bulge and bar dominated, and a ‘blue cloud’ which has little, or no, evidence for a (classical) bulge or bar. These results are consistent with similar trends for barred galaxies seen recently both locally and at higher redshift, and with early studies using the RC3. We discuss these results in the context of internal (secular) galaxy evolution scenarios and the possible links to the formation of bars and bulges in disc galaxies.


Monthly Notices of the Royal Astronomical Society | 2012

The Milky Way Project First Data Release: a bubblier Galactic disc

Robert J. Simpson; Matthew S. Povich; Sarah Kendrew; Chris J. Lintott; Eli Bressert; K. Arvidsson; C. J. Cyganowski; Sarah T. Maddison; Kevin Schawinski; Reid Sherman; Arfon M. Smith; Grace A. Wolf-Chase

We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website ‘The Milky Way Project’. Bubbles in the new catalogue have been independently measured by at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists – volunteers recruited online and taking part in this research – have independently rediscovered the locations of at least 86 per cent of three widely used catalogues of bubbles and H ii regions  whilst finding an order of magnitude more objects. 29 per cent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a ‘heat map’ of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites.


Monthly Notices of the Royal Astronomical Society | 2016

Planet Hunters IX. KIC 8462852 - Where's the flux?

Tabetha S. Boyajian; Daryll LaCourse; Saul Rappaport; Daniel C. Fabrycky; Debra A. Fischer; Davide Gandolfi; Grant M. Kennedy; H. Korhonen; Michael C. Liu; A. Moór; Katalin Oláh; K. Vida; Mark C. Wyatt; William M. J. Best; John M. Brewer; F. Ciesla; B. Csak; H. J. Deeg; Trent J. Dupuy; G. Handler; Kevin Heng; Steve B. Howell; S. T. Ishikawa; József Kovács; T. Kozakis; L. Kriskovics; J. Lehtinen; Chris Lintott; Stuart Lynn; D. Nespral

TSB acknowledges support provided through NASA grant ADAP12-0172 and ADAP14-0245. MCW and GMK acknowledge the support of the European Union through ERC grant number 279973. The authors acknowledge support from the Hungarian Research Grants OTKA K-109276, OTKA K-113117, the Lendulet-2009 and Lendulet-2012 Program (LP2012-31) of the Hungarian Academy of Sciences, the Hungarian National Research, Development and Innovation Office – NKFIH K-115709, and the ESA PECS Contract No. 4000110889/14/NL/NDe. This work was supported by the Momentum grant of the MTA CSFK Lendulet Disc Research Group. GH acknowledges support by the Polish NCN grant 2011/01/B/ST9/05448. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research made use of The DASCH project; we are also grateful for partial support from NSF grants AST-0407380, AST-0909073, and AST-1313370. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN). We thank Scott Dahm, Julie Rivera, and the Keck Observatory staff for their assistance with these observations. This research was supported in part by NSF grant AST-0909222 awarded to M. Liu. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. KS gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1. HJD and DN acknowledge support by grant AYA2012-39346-C02-02 of the Spanish Secretary of State for R&D&i (MINECO). This paper makes use of data from the first public release of the WASP data (Butters et al. 2010) as provided by the WASP consortium and services at the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. This research made use of the SIMBAD and VIZIER Astronomical Databases, operated at CDS, Strasbourg, France (http://cdsweb.u-strasbg.fr/), and of NASAs Astrophysics Data System.


Monthly Notices of the Royal Astronomical Society | 2012

Planet Hunters: the first two planet candidates identified by the public using the Kepler public archive data

Debra A. Fischer; Megan E. Schwamb; Kevin Schawinski; Chris J. Lintott; John M. Brewer; Matt Giguere; Stuart Lynn; Michael Parrish; Thibault Sartori; Robert Simpson; Arfon M. Smith; Julien F. P. Spronck; Na talie Batalha; Jason F. Rowe; Jon M. Jenkins; Steve Bryson; Andrej Prsa; Peter Tenenbaum; Justin R. Crepp; Timothy D. Morton; Andrew W. Howard; Michele Beleu; Zachary Kaplan; Nick vanNispen; Charlie Sharzer; Justin DeFouw; Agnieszka Hajduk; Joe P Neal; Adam Nemec; Na dine Schuepbach

Planet Hunters is a new citizen science project designed to engage the public in an exoplanet search using NASA Kepler public release data. In the first month after launch, users identified two new planet candidates which survived our checks for false positives. The follow-up effort included analysis of Keck HIRES spectra of the host stars, analysis of pixel centroid offsets in the Kepler data and adaptive optics imaging at Keck using NIRC2. Spectral synthesis modelling coupled with stellar evolutionary models yields a stellar density distribution, which is used to model the transit orbit. The orbital periods of the planet candidates are 9.8844 ± 0.0087 d (KIC 10905746) and 49.7696 ± 0.000 39 d (KIC 6185331), and the modelled planet radii are 2.65 and 8.05 R_⊕. The involvement of citizen scientists as part of Planet Hunters is therefore shown to be a valuable and reliable tool in exoplanet detection.


arXiv: Statistics Theory | 2013

Dynamic Bayesian Combination of Multiple Imperfect Classifiers

Edwin Simpson; S. Roberts; Ioannis Psorakis; Arfon M. Smith

Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this chapter we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination.We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.


Scientific Data | 2015

Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna

Alexandra Swanson; Margaret Kosmala; Chris Lintott; Robert Simpson; Arfon M. Smith; Craig Packer

Camera traps can be used to address large-scale questions in community ecology by providing systematic data on an array of wide-ranging species. We deployed 225 camera traps across 1,125 km2 in Serengeti National Park, Tanzania, to evaluate spatial and temporal inter-species dynamics. The cameras have operated continuously since 2010 and had accumulated 99,241 camera-trap days and produced 1.2 million sets of pictures by 2013. Members of the general public classified the images via the citizen-science website www.snapshotserengeti.org. Multiple users viewed each image and recorded the species, number of individuals, associated behaviours, and presence of young. Over 28,000 registered users contributed 10.8 million classifications. We applied a simple algorithm to aggregate these individual classifications into a final ‘consensus’ dataset, yielding a final classification for each image and a measure of agreement among individual answers. The consensus classifications and raw imagery provide an unparalleled opportunity to investigate multi-species dynamics in an intact ecosystem and a valuable resource for machine-learning and computer-vision research.


Monthly Notices of the Royal Astronomical Society | 2014

Galaxy Zoo: an independent look at the evolution of the bar fraction over the last eight billion years from HST-COSMOS ?

Thomas Melvin; Karen L. Masters; Chris Lintott; Robert C. Nichol; Brooke Simmons; Steven P. Bamford; Kevin R. V. Casteels; Edmond Cheung; Edward M. Edmondson; L. Fortson; Kevin Schawinski; Ramin A. Skibba; Arfon M. Smith; Kyle W. Willett

We measure the redshift evolution of the bar fraction in a sample of 2380 visually selected disc galaxies found in Cosmic Evolution Survey (COSMOS) Hubble Space Telescope (HST ) images. The visual classications used both to identify the disc sample and to indicate the presence of stellar bars were provided by citizen scientists via the Galaxy Zoo: Hubble (GZH) project. We nd that the overall bar fraction decreases by a factor of 2, from 22 5% at z = 0:4 (tlb = 4:2 Gyr) to 11 2% at z = 1:0 (tlb = 7:8 Gyr), consistent with previous analysis. We show that this decrease, of the strong bar fraction in a volume limited sample of massive disc galaxies [stellar mass limit of log(M?=M ) 10:0], cannot be due to redshift-dependent biases hiding either bars or disc galaxies at higher redshifts. Splitting our sample into three bins of mass we nd that the decrease in bar fraction is most prominent in the highest mass bin, while the lower mass discs in our sample show a more modest evolution. We also include a sample of 98 red disc galaxies. These galaxies have a high bar fraction (45 5%), and are missing from other COSMOS samples which used SED tting or colours to identify high redshift discs. Our results are consistent with a picture in which the evolution of massive disc galaxies begins to be aected by slow (secular) internal process at z 1. We discuss possible connections of the decrease in bar fraction to the redshift, including the growth of stable disc galaxies, mass evolution of the gas content in disc galaxies, as well as the mass-dependent eects of tidal interactions.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxy Zoo: Quantifying Morphological Indicators of Galaxy Interaction

Kevin R. V. Casteels; Steven P. Bamford; Ramin A. Skibba; Karen L. Masters; Chris Lintott; William C. Keel; Kevin Schawinski; Robert C. Nichol; Arfon M. Smith

We use Galaxy Zoo 2 visual classifications to study the morphological signatures of interaction between similar-mass galaxy pairs in the Sloan Digital Sky Survey. We find that many observable features correlate with projected pair separation – not only obvious indicators of merging, disturbance and tidal tails, but also more regular features, such as spiral arms and bars. These trends are robustly quantified, using a control sample to account for observational biases, producing measurements of the strength and separation scale of various morphological responses to pair interaction. For example, we find that the presence of spiral features is enhanced at scales ≲ 70 h− 170 kpc, probably due to both increased star formation and the formation of tidal tails. On the other hand, the likelihood of identifying a bar decreases significantly in pairs with separations ≲ 30 h− 170 kpc, suggesting that bars are suppressed by close interactions between galaxies of similar mass. We go on to show how morphological indicators of physical interactions provide a way of significantly refining standard estimates for the frequency of close pair interactions, based on velocity offset and projected separation. The presence of loosely wound spiral arms is found to be a particularly reliable signal of an interaction, for projected pair separations up to ∼100 h− 170 kpc. We use this indicator to demonstrate our method, constraining the fraction of low-redshift galaxies in truly interacting pairs, with M* > 109.5 M⊙ and mass ratio <4, to be between 0.4 and 2.7 per cent.

Collaboration


Dive into the Arfon M. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Fortson

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge