Ari Laiho
Helsinki University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ari Laiho.
Langmuir | 2011
Hua Jin; Marjo Kettunen; Ari Laiho; Hanna Pynnönen; Jouni Paltakari; Abraham Marmur; Olli Ikkala; Robin H. A. Ras
We demonstrate that superhydrophobic and superoleophobic nanocellulose aerogels, consisting of fibrillar networks and aggregates with structures at different length scales, support considerable load on a water surface and also on oils as inspired by floatation of insects on water due to their superhydrophobic legs. The aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Furthermore, we demonstrate high-adhesive pinning of water and oil droplets, gas permeability, light reflection at the plastron in water and oil, and viscous drag reduction of the fluorinated aerogel in contact with oil. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.
Nature Nanotechnology | 2013
Mauri A. Kostiainen; Panu Hiekkataipale; Ari Laiho; Vincent Lemieux; Jani Seitsonen; Janne Ruokolainen; Pierpaolo Ceci
Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB(8)(fcc) crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.
ACS Applied Materials & Interfaces | 2009
Petri Pulkkinen; Jun Shan; Kirsi Leppänen; Ari Känsäkoski; Ari Laiho; Mikael Järn; Heikki Tenhu
The aim of this research was to explore the use of amine-containing polymeric and low-molar-mass organic protecting agents in the preparation of copper nanoparticles. Particles were synthesized using poly(ethylene imine) (PEI) or tetraethylenepentamine (TEPA) as protecting agents. The resulting particles were studied with UV-vis spectrometry, thermogravimetry, scanning electron microscopy, and transmission electron microscopy, wide-angle X-ray scattering with heating, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The average crystal sizes for the particles were at room temperature 8.5 and 19.4 nm for PEI and TEPA, respectively, and some surface oxidation was observed. The particles were sintered on paper, and the resistance and resistivity were measured. For Cu/PEI samples, the protecting agent was removed upon sintering at relatively low temperatures (between 150 and 200 degrees C). At this temperature range, particles exhibited a rapid increase in the crystal size. Sintered particles exhibited high conductivity, indicating that these kinds of materials might find use in paper-based printing.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ari Laiho; Lars Herlogsson; Robert Forchheimer; Xavier Crispin; Magnus Berggren
Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups.
Applied Physics Letters | 2008
Ari Laiho; Himadri S. Majumdar; Jayanta K. Baral; Fredrik Jansson; Ronald Österbacka; Olli Ikkala
The working principles of thin film organic memory devices remain debated and tunability has been less presented. We show that the nanostructure of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and polystyrene (PS) allows facile tuning of switching behavior for low PCBM concentrations upon annealing above the glass transition temperature of PS. By increasing the PCBM concentration from 2 to 6 wt %, the switching voltage from off to on state during the first voltage sweep systematically decreases. In subsequent voltage sweeps negative differential resistance effect is observed. Above ca. 7 wt %, chains of PCBM clusters couple the electrodes, which leads to Ohmic behavior.
Advanced Materials | 2011
Oscar Larsson; Ari Laiho; Wolfgang Schmickler; Magnus Berggren; Xavier Crispin
The dimensionality of charge transport in an organic electrochemical transistor depends on the degree of advancement of the electrochemical half-reaction at the organic semiconductor/electrolyte interface. A carbon nanotube (CNT) nanoporous gate electrode leads to bulk transport in the semiconductor, while a flat Au gate electrode allows for localizing of the electrochemical oxidation of the semiconducting polymer at the organic semiconductor/electrolyte interface.
Biomacromolecules | 2008
Ramasubbu Ramani; Sirkku Hanski; Ari Laiho; Roman Tuma; Simo Kilpeläinen; Filip Tuomisto; Janne Ruokolainen; Olli Ikkala
We present lamellar self-assembly of cationic poly(L-histidine) (PLH) stoichiometrically complexed with an anionic surfactant, dodecyl benzenesulfonic acid (DBSA), which allows a stabilized conformation reminiscent of polyproline type II (PPII) left-handed helices. Such a conformation has no intrapeptide hydrogen bonds, and it has previously been found to be one source of flexibility, e.g., in collagen and elastin, as well as an intermediate in silk processing. PLH(DBSA)1.0 complexes were characterized by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The PPII-like conformation in PLH(DBSA)1.0 is revealed by characteristic CD and FTIR spectra, where the latter indicates absence of intrachain peptide hydrogen bonds. In addition, a glass transition was directly verified by DSC at ca. 135 degrees C for PLH(DBSA)1.0 and indirectly by SAXS and TEM in comparison to pure PLH at 165 degrees C, thus indicating plasticization. Glass transitions have not been observed before in polypeptide-surfactant complexes. The present results show that surfactant binding can be a simple scheme to provide steric crowding to stabilize PPII conformation to tune the polypeptide properties, plasticization and flexibility.
Review of Scientific Instruments | 2007
Ari Laiho; Olli Ikkala
In soft materials, self-assembled nanoscale structures can allow new functionalities but a general problem is to align such local structures aiming at monodomain overall order. In order to achieve shear alignment in a controlled manner, a novel type of rheo-optical apparatus has here been developed that allows small sample volumes and in situ monitoring of the alignment process during the shear. Both the amplitude and orientation angles of low level linear birefringence and dichroism are measured while the sample is subjected to large amplitude oscillatory shear flow. The apparatus is based on a commercial rheometer where we have constructed a flow cell that consists of two quartz teeth. The lower tooth can be set in oscillatory motion whereas the upper one is connected to the force transducers of the rheometer. A custom made cylindrical oven allows the operation of the flow cell at elevated temperatures up to 200 degrees C. Only a small sample volume is needed (from 9 to 25 mm(3)), which makes the apparatus suitable especially for studying new materials which are usually obtainable only in small quantities. Using this apparatus the flow alignment kinetics of a lamellar polystyrene-b-polyisoprene diblock copolymer is studied during shear under two different conditions which lead to parallel and perpendicular alignment of the lamellae. The open device geometry allows even combined optical/x-ray in situ characterization of the alignment process by combining small-angle x-ray scattering using concepts shown by Polushkin et al. [Macromolecules 36, 1421 (2003)].
MRS Proceedings | 2008
Ari Laiho; Jayanta K. Baral; Himadri S. Majumdar; Daniel Tobjörk; Janne Ruokolainen; Ronald Österbacka; Olli Ikkala
In this report we study the morphology and chemical composition of a nanocomposite memory device where the active device layer is sandwiched between two aluminum electrodes and consists of a nanocomposite of polystyrene (PS) and [6,6]-phenyl-C 61 butyric acid methyl ester (PCBM). The morphology of the active layer is imaged both in plan-view and cross-sectional view by using transmission electron microscopy (TEM). We introduce two techniques to prepare the cross-sections from the active layer, namely, a conventional technique based on microtoming and secondly nanostructural processing with focused ion beam (FIB). Based on the morphology studies we deduce that within the used concentrations the PCBM forms spherical nanoscale clusters within the continuous PS matrix. The chemical composition of the device is determined by using X-ray photoelectron spectroscopy (XPS) and it shows that the thermal evaporation of the aluminum electrodes does not lead to observable inclusion of the aluminum into the active material layer.
Applied Physics Letters | 2012
Xiaodong Wang; Ari Laiho; Magnus Berggren; Xavier Crispin
We investigate the possibility to maintain an electric polarization in an organic bilayer via ion trapping, i.e., without any external bias. In the cryptand-polyanion bilayer, ions of specific size can be strongly coordinated with organic macrocyclic molecules. Cations move from the polyanion layer to the cryptand layer upon applying a bias and are trapped in this layer. As a result, the voltage dependence of the polarization displays a hysteresis. The bilayer is then advantageously used as an electronic insulating layer in an organic field effect transistor. The ions trapping and de-trapping can be followed by the amplitude of the threshold voltage (Vth) shift as well as its temporal evolution.