Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arianna Calistri is active.

Publication


Featured researches published by Arianna Calistri.


Cell | 2003

AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding

Bettina Strack; Arianna Calistri; Stewart Craig; Elena Popova; Heinrich G. Göttlinger

HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain function. These observations identify AIP1 as a component of the viral budding machinery, which serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef

Massimo Pizzato; Anna Helander; Elena Popova; Arianna Calistri; Alessia Zamborlini; Giorgio Palù; Heinrich G. Göttlinger

Nef is a virulence factor of HIV-1 and other primate lentiviruses that is crucial for rapid progression to AIDS. In cell culture, Nef increases the infectivity of HIV-1 progeny virions by an unknown mechanism. We now show that dynamin 2 (Dyn2), a key regulator of vesicular trafficking, is a binding partner of Nef that is required for its ability to increase viral infectivity. Dominant-negative Dyn2 or the depletion of Dyn2 by small interfering RNA potently inhibited the effect of Nef on HIV-1 infectivity. Furthermore, in Dyn2-depleted cells, this function of Nef could be rescued by ectopically expressed Dyn2 but not by Dyn1, a closely related isoform that does not bind Nef. The infectivity enhancement by Nef also depended on clathrin, because it was diminished in clathrin-depleted cells and profoundly inhibited in cells expressing the clathrin-binding domain of AP180, which blocks clathrin-coated pit formation but not clathrin-independent endocytosis. Together, these findings imply that the infectivity enhancement activity of Nef depends on Dyn2- and clathrin-mediated membrane invagination events.


Journal of Virology | 2007

Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies

Arianna Calistri; Paola Sette; Cristiano Salata; Enrico Cancellotti; Cristina Forghieri; Alessandra Comin; Heinrich G. Göttlinger; Gabriella Campadelli-Fiume; Giorgio Palù; Cristina Parolin

ABSTRACT The biogenesis of multivesicular bodies (MVBs) is topologically equivalent to virion budding. Hence, a number of viruses exploit the MVB pathway to build their envelope and exit from the cell. By expression of dominant negative forms of Vps4 and Vps24, two components of the MVB pathway, we observed an impairment in infectious herpes simplex virus (HSV) assembly/egress, in agreement with a recent report showing the involvement in HSV envelopment of Vps4, the MVB-specific ATPase (C. M. Crump, C. Yates, and T. Minson, J. Virol. 81:7380-7387). Furthermore, HSV infection resulted in morphological changes to MVBs. Glycoprotein B (gB), one of the most highly conserved glycoproteins across the Herpesviridae family, was sorted to MVB membranes. In cells expressing the dominant negative form of Vps4, the site of intracellular gB accumulation was altered; part of gB accumulated as an endoglycosidase H-sensitive immature form at a calreticulin-positive compartment, indicating that gB traffic was dependent on a functional MVB pathway. gB was ubiquitinated in both infected and transfected cells. Ubiquitination was in part dependent on ubiquitin lysine 63, a signal for cargo sorting to MVBs. Partial deletion of the gB cytoplasmic tail resulted in a dramatic reduction of ubiquitination, as well as of progeny virus assembly and release to the extracellular compartment. Thus, HSV envelopment/egress and gB intracellular trafficking are dependent on functional MVB biogenesis. Our data support the view that the sorting of gB to MVB membranes may represent a critical step in HSV envelopment and egress and that modified MVB membranes constitute a platform for HSV cytoplasmic envelopment or that MVB components are recruited to the site(s) of envelopment.


Journal of Virology | 2002

Late Assembly Domain Function Can Exhibit Context Dependence and Involves Ubiquitin Residues Implicated in Endocytosis

Bettina Strack; Arianna Calistri; Heinrich G. Göttlinger

ABSTRACT Retroviral Gag polyproteins contain regions that promote the separation of virus particles from the plasma membrane and from each other. These Gag regions are often referred to as late assembly (L) domains. The L domain of human immunodeficiency virus type 1 (HIV-1) is in the C-terminal p6 gag domain and harbors an essential P(T/S)APP motif, whereas the L domains of oncoretroviruses are in the N-terminal half of the Gag precursor and have a PPXY core motif. We recently observed that L domains induce the ubiquitination of a minimal HIV-1 Gag construct and that point mutations which abolish L domain activity prevent Gag ubiquitination. In that study, a peptide from the Ebola virus L domain with overlapping P(T/S)APP and PPXY motifs showed exceptional activity in promoting Gag ubiquitination and the release of virus-like particles. We now show that a substitution which disrupts the PPXY motif but leaves the P(T/S)APP motif intact abolishes L domain activity in the minimal Gag context, but not in the context of a near full-length HIV-1 Gag precursor. Our results reveal that the P(T/S)APP motif does not function autonomously and indicate that the HIV-1 nucleocapsid-p1 region, which is proximal to p6 gag , can cooperate with the conserved L domain core motif. We have also examined the effects of ubiquitin mutants on virus-like particle production, and the results indicate that residues required for the endocytosis function of ubiquitin are also involved in virus budding.


Reviews in Medical Virology | 2009

Role of multivesicular bodies and their components in the egress of enveloped RNA viruses.

Arianna Calistri; Cristiano Salata; Cristina Parolin; Giorgio Palù

As an enveloped virus buds, the nascent viral capsid becomes wrapped in a plasma membrane‐derived lipid envelope, and a membrane fission event is thus necessary to separate the virion from the host cell. This membrane fission event is well characterised in the case of enveloped RNA viruses, where it is promoted by late assembly domains (L‐domains) present at the level of specific viral structural proteins. Research conducted over the past 10 years has demonstrated that L‐domains represent docking sites for cellular proteins essential for the biogenesis of a cellular organelle, the multivesicular body (MVB). In this way, enveloped RNA viruses hijack the MVB components to the cellular site where the budding is executed. This review will focus on the cellular machinery exploited by enveloped RNA viruses in order to be released from infected cells. The role of ubiquitin and lipids in viral budding will also be discussed. Copyright


Antiviral Research | 2015

The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand.

Sara Artusi; Matteo Nadai; Rosalba Perrone; Maria Angela Biasolo; Giorgio Palù; Louis Flamand; Arianna Calistri; Sara N. Richter

Abstract Guanine-rich nucleic acids can fold into G-quadruplexes, secondary structures implicated in important regulatory functions at the genomic level in humans, prokaryotes and viruses. The remarkably high guanine content of the Herpes Simplex Virus-1 (HSV-1) genome prompted us to investigate both the presence of G-quadruplex forming sequences in the viral genome and the possibility to target them with G-quadruplex ligands to obtain anti-HSV-1 effects with a novel mechanism of action. Using biophysical, molecular biology and antiviral assays, we showed that the HSV-1 genome displays multiple clusters of repeated sequences that form very stable G-quadruplexes. These sequences are mainly located in the inverted repeats of the HSV-1 genome. Treatment of HSV-1 infected cells with the G-quadruplex ligand BRACO-19 induced inhibition of virus production. BRACO-19 was able to inhibit Taq polymerase processing at G-quadruplex forming sequences in the HSV-1 genome, and decreased intracellular viral DNA in infected cells. The last step targeted by BRACO-19 was viral DNA replication, while no effect on virus entry in the cells was observed. This work, presents the first evidence of extended G-quadruplex sites in key regions of the HSV-1 genome, indicates the possibility to block viral DNA replication by G-quadruplex-ligand and therefore provides a proof of concept for the use of G-quadruplex ligands as new anti-herpetic therapeutic options.


Cells | 2014

The ubiquitin-conjugating system: multiple roles in viral replication and infection.

Arianna Calistri; Denis Munegato; Ilaria Carli; Cristina Parolin; Giorgio Palù

Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.


Journal of Cellular Physiology | 2009

vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity.

Cristiano Salata; Matteo Curtarello; Arianna Calistri; Elena Sartori; Paola Sette; Marina de Bernard; Cristina Parolin; Giorgio Palù

Human herpesvirus 8 (HHV‐8) is a lymphotropic herpesvirus linked to several disorders such as Kaposis sarcoma, primary effusion lymphoma and multicentric Castlemans disease. Several HHV‐8 proteins regulate host innate and adaptive immune response; in particular, orfK14 is expressed as an immediate early gene during the viral lytic cycle and encodes a surface glycoprotein (vOX2), significantly homologous to the cellular OX2, which delivers inhibitory signals to macrophages. Although it has been suggested that vOX2 may down‐regulate basophil and neutrophil functions, its role in macrophages, a cell type lytically infected by HHV‐8 in vivo, is still controversial. Therefore, we investigated the effect of vOX2 expression in human primary monocyte‐derived macrophages (MDMs). In this report, we demonstrate that vOX2‐expressing MDMs in basal conditions are induced to produce inflammatory cytokines and display higher phagocytic activity with respect to mock cells. By contrast, an opposite effect is exhibited by vOX2 in MDMs undergoing IFN‐γ‐activation, with a down‐modulation of the cytokine production and phagocytic activity. Moreover, we observed that, when MDMs are co‐cultured with vOX2‐expressing cells, the inflammatory cytokine release is increased, independently from the MDM activation state. Interestingly, we could correlate our results with the mRNA transcript level of the vOX2 cellular CD200R receptor. Finally, we demonstrate a down‐regulation of the MHC class I and class II molecules on the cell surface of vOX2‐transduced MDMs. Our results provide new insights into the immunomodulatory effects of HHV‐8 vOX2 protein. J. Cell. Physiol. 219: 698–706, 2009.


Journal of Virology | 2012

Feline Tetherin Is Characterized by a Short N-Terminal Region and Is Counteracted by the Feline Immunodeficiency Virus Envelope Glycoprotein

Michele Celestino; Arianna Calistri; C Del Vecchio; Cristiano Salata; Flavia Chiuppesi; Mauro Pistello; Alessandra Borsetti; Giorgio Palù; Cristina Parolin

ABSTRACT Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2504 and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2504 is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2504 failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2504 was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2504 also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.


Biochemical Pharmacology | 2011

Amiodarone impairs trafficking through late endosomes inducing a Niemann-Pick C-like phenotype

Elena Piccoli; Matteo Nadai; Carla Mucignat Caretta; Valeria Bergonzini; Claudia Del Vecchio; Huy Riem Ha; Laurent Bigler; Daniele Dal Zoppo; Elisabetta Faggin; Andrea Pettenazzo; Rocco Orlando; Cristiano Salata; Arianna Calistri; Giorgio Palù; Aldo Baritussio

Abstract Patients treated with amiodarone accumulate lysobisphosphatidic acid (LBPA), also known as bis(monoacylglycero)phosphate, in airway secretions and develop in different tissues vacuoles and inclusion bodies thought to originate from endosomes. To clarify the origin of these changes, we studied in vitro the effects of amiodarone on endosomal activities like transferrin recycling, Shiga toxin processing, ESCRT-dependent lentivirus budding, fluid phase endocytosis, proteolysis and exosome secretion. Furthermore, since the accumulation of LBPA might point to a broader disturbance in lipid homeostasis, we studied the effect of amiodarone on the distribution of LBPA, unesterified cholesterol, sphingomyelin and glycosphyngolipids. Amiodarone analogues were also studied, including the recently developed derivative dronedarone. We found that amiodarone does not affect early endosomal activities, like transferrin recycling, Shiga toxin processing and lentivirus budding. Amiodarone, instead, interferes with late compartments of the endocytic pathway, blocking the progression of fluid phase endocytosis and causing fusion of organelles, collapse of lumenal structures, accumulation of undegraded substrates and amassing of different types of lipids. Not all late endocytic compartments are affected, since exosome secretion is spared. These changes recall the Niemann-Pick type-C phenotype (NPC), but originate by a different mechanism, since, differently from NPC, they are not alleviated by cholesterol removal. Studies with analogues indicate that basic pKa and high water-solubility at acidic pH are crucial requirements for the interference with late endosomes/lysosomes and that, in this respect, dronedarone is at least as potent as amiodarone. These findings may have relevance in fields unrelated to rhythm control.

Collaboration


Dive into the Arianna Calistri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinrich G. Göttlinger

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge