Arie van Hoek
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arie van Hoek.
Journal of Fluorescence | 2005
Jan Willem Borst; Mark A. Hink; Arie van Hoek; Antonie J. W. G. Visser
The fluorescence lifetime strongly depends on the immediate environment of the fluorophore. Time-resolved fluorescence measurements of the enhanced forms of ECFP and EYFP in water–glycerol mixtures were performed to quantify the effects of the refractive index and viscosity on the fluorescence lifetimes of these proteins. The experimental data show for ECFP and EYFP two fluorescence lifetime components: one short lifetime of about 1 ns and a longer lifetime of about 3.7 ns of ECFP and for EYFP 3.4. The fluorescence of ECFP is very heterogeneous, which can be explained by the presence of two populations: a conformation (67% present) where the fluorophore is less quenched than in the other conformation (33% present). The fluorescence decay of EYFP is much more homogeneous and the amplitude of the short fluorescence lifetime is about 5%. The fluorescence anisotropy decays show that the rotational correlation time of both proteins scales with increasing viscosity of the solvent similarly as shown earlier for GFP. The rotational correlation times are identical for ECFP and EYFP, which can be expected since both proteins have the same shape and size. The only difference observed is the slightly lower initial anisotropy for ECFP as compared to the one of EYFP.
FEBS Letters | 2007
Bart van Oort; Arie van Hoek; Alexander V. Ruban; Herbert van Amerongen
Non‐photochemical quenching (NPQ) protects plants against photodamage by converting excess excitation energy into harmless heat. In vitro aggregation of the major light‐harvesting complex (LHCII) induces similar quenching, the molecular mechanism of which is frequently considered to be the same. However, a very basic question regarding the aggregation‐induced quenching has not been answered yet. Are excitation traps created upon aggregation, or do existing traps start quenching excitations more efficiently in aggregated LHCII where trimers are energetically coupled? Time‐resolved fluorescence experiments presented here demonstrate that aggregation creates traps in a significant number of LHCII trimers, which subsequently also quench excitations in connected LHCIIs.
Biochimica et Biophysica Acta | 2008
Koen Broess; Gediminas Trinkunas; Arie van Hoek; Roberta Croce; Herbert van Amerongen
The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial excited-state populations in the inner and outer antenna system. The non-exponential fluorescence decay appears to be 4.3+/-1.8 ps slower upon 484 nm excitation for preparations that contain on average 2.45 LHCII (light-harvesting complex II) trimers per reaction center. Using a recently introduced coarse-grained model it can be concluded that the average migration time of an electronic excitation towards the RC contributes approximately 23% to the overall average trapping time. The migration time appears to be approximately two times faster than expected based on previous ultrafast transient absorption and fluorescence measurements. It is concluded that excitation energy transfer in PSII follows specific energy transfer pathways that require an optimized organization of the antenna complexes with respect to each other. Within the context of the coarse-grained model it can be calculated that the rate of primary charge separation of the RC is (5.5+/-0.4 ps)(-1), the rate of secondary charge separation is (137+/-5 ps)(-1) and the drop in free energy upon primary charge separation is 826+/-30 cm(-1). These parameters are in rather good agreement with recently published results on isolated core complexes [Y. Miloslavina, M. Szczepaniak, M.G. Muller, J. Sander, M. Nowaczyk, M. Rögner, A.R. Holzwarth, Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study, Biochemistry 45 (2006) 2436-2442].
Biophysical Journal | 2008
Bart van Oort; Alexey Amunts; Jan Willem Borst; Arie van Hoek; Nathan Nelson; Herbert van Amerongen; Roberta Croce
Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 +/- 2.5 ps) and rates of excitation energy transfer from LHCI to core (k(LC)) and vice versa (k(CL)). The ratio between these rates, R = k(CL)/k(LC), appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. k(LC) depends slightly but nonsystematically on detection wavelength, averaging (9.4 +/- 4.9 ps)(-1). R ranges from 0.5 (<690 nm) to approximately 1.3 above 720 nm.
Journal of Fluorescence | 2003
Mark A. Hink; Nina V. Visser; Jan Willem Borst; Arie van Hoek; Antonie J. W. G. Visser
Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein (EYFP–citrine) and from the red fluorescent protein (DsRed) isolated from the coral species Discosoma. The spectra are stored in a database. This report describes how the spectra can be used as templates to derive the critical transfer distance for any pair of fluorescent proteins.
Biophysical Journal | 1998
Petra van den Berg; Arie van Hoek; Christopher D. Walentas; Richard N. Perham; Antonie J. W. G. Visser
Time-resolved polarized flavin fluorescence was used to study the active site dynamics of Escherichia coli glutathione reductase (GR). Special consideration was given to the role of Tyr177, which blocks the access to the NADPH binding-site in the crystal structure of the enzyme. By comparing wild-type GR with the mutant enzymes Y177F and Y177G, a fluorescence lifetime of 7 ps that accounts for approximately 90% of the fluorescence decay could be attributed to quenching by Y177. Based on the temperature invariance for this lifetime, and the very high quenching rate, electron transfer from Y177 to the light-excited isoalloxazine part of flavin adenine dinucleotide (FAD) is proposed as the mechanism of flavin fluorescence quenching. Contrary to the mutant enzymes, wild-type GR shows a rapid fluorescence depolarization. This depolarization process is likely to originate from a transient charge transfer interaction between Y177 and the light-excited FAD, and not from internal mobility of the flavin, as has previously been proposed. Based on the fluorescence lifetime distributions, the mutants Y177F and Y177G have a more flexible protein structure than wild-type GR: in the range of 223 K to 277 K in 80% glycerol, both tyrosine mutants mimic the closely related enzyme dihydrolipoyl dehydrogenase. The fluorescence intensity decays of the GR enzymes can only be explained by the existence of multiple quenching sites in the protein. Although structural fluctuations are likely to contribute to the nonexponential decay and the probability of quenching by a specific site, the concept of conformational substates need not be invoked to explain the heterogeneous fluorescence dynamics.
Biophysical Chemistry | 2000
Marsha A Uskova; Jan Willem Borst; Mark A. Hink; Arie van Hoek; Arjen Schots; Natalia L. Klyachko; Antonie J. W. G. Visser
We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0.
Journal of Biochemical and Biophysical Methods | 1983
Arie van Hoek; Jacques Vervoort; Antonie J. W. G. Visser
A spectrofluorometer is described consisting of an excitation source, optics, detector and time resolving electronics. The excitation source consists of a mode-locked Ar ion laser, which synchronously pumps a dye laser, followed by a frequency doubling device. The repetition frequency of the U.V. pulses (FWHM some ps) has been reduced by an extra-cavity electro-optical modulator. Provisions have been made in the optical configuration to determine both time-resolved fluorescence spectra and fluorescence anisotropy decay curves. The commercially available electronics have been optimized for maximum time resolution. The spectral output of the excitation source is confined between 280 and 310 nm, which encompasses the region for eliciting protein fluorescence. The performance of the complete system has been tested with single lifetime standards like p-terphenyl in cyclohexane or with N-acetyl-L-tryptophanamide in pH 7.5 buffer. Serum albumins from human and bovine sources have been employed as examples for time resolved fluorescence spectra and for the demonstration of anisotropy decay curves. Using these methods protein dynamics in the (sub)nanosecond time region can be directly explored.
European Biophysics Journal | 2003
Elena V. Kudryashova; M.B.J. Meinders; Antonie J. W. G. Visser; Arie van Hoek; Harmen H. J. de Jongh
The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/water interface adopts a characteristic partially unfolded conformation in which the content of the β-sheet is 10% lower compared to that of the protein in bulk solution. Adsorption to the interface leads to considerable changes in the rotational dynamics of ovalbumin. The results indicate that the end-over-end mobility of the ellipsoidal protein becomes substantially restricted. This is likely to reflect a preferential orientation of the protein at the interface. Continuous compression of surface layers of ovalbumin causes local aggregation of the protein, resulting in protein–network formation at the interface. The altered protein–protein interactions contribute to the strong increase in surface pressure observed.
Photosynthesis Research | 2010
Sashka Krumova; Sergey P. Laptenok; László Kovács; Tünde Tóth; Arie van Hoek; Győző Garab; Herbert van Amerongen
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.