Philippe I. H. Bastiaens
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe I. H. Bastiaens.
Trends in Cell Biology | 1999
Philippe I. H. Bastiaens; Anthony Squire
Fluorescence lifetime imaging microscopy (FLIM) is a technique in which the mean fluorescence lifetime of a chromophore is measured at each spatially resolvable element of a microscope image. The nanosecond excited-state lifetime is independent of probe concentration or light path length but dependent upon excited-state reactions such as fluorescence resonance energy transfer (FRET). These properties of fluorescence lifetimes allow exploration of the molecular environment of labelled macromolecules in the interior of cells. Imaging of fluorescence lifetimes enables biochemical reactions to be followed at each microscopically resolvable location within the cell.
Nature | 2003
Eric M. Phizicky; Philippe I. H. Bastiaens; Heng Zhu; Michael Snyder; Stanley Fields
The long-term challenge of proteomics is enormous: to define the identities, quantities, structures and functions of complete complements of proteins, and to characterize how these properties vary in different cellular contexts. One critical step in tackling this goal is the generation of sets of clones that express a representative of each protein of a proteome in a useful format, followed by the analysis of these sets on a genome-wide basis. Such studies enable genetic, biochemical and cell biological technologies to be applied on a systematic level, leading to the assignment of biochemical activities, the construction of protein arrays, the identification of interactions, and the localization of proteins within cellular compartments.
Nature Cell Biology | 2007
Silvia D. M. Santos; Peter J. Verveer; Philippe I. H. Bastiaens
The mitogen-activated protein kinase (MAPK) network is a conserved signalling module that regulates cell fate by transducing a myriad of growth-factor signals. The ability of this network to coordinate and process a variety of inputs from different growth-factor receptors into specific biological responses is, however, still not understood. We investigated how the MAPK network brings about signal specificity in PC-12 cells, a model for neuronal differentiation. Reverse engineering by modular-response analysis uncovered topological differences in the MAPK core network dependent on whether cells were activated with epidermal or neuronal growth factor (EGF or NGF). On EGF stimulation, the network exhibited negative feedback only, whereas a positive feedback was apparent on NGF stimulation. The latter allows for bi-stable Erk activation dynamics, which were indeed observed. By rewiring these regulatory feedbacks, we were able to reverse the specific cell responses to EGF and NGF. These results show that growth factor context determines the topology of the MAPK signalling network and that the resulting dynamics govern cell fate.
The EMBO Journal | 1999
Tony Ng; David Shima; Anthony Squire; Philippe I. H. Bastiaens; Steve Gschmeissner; Martin J. Humphries; Peter J. Parker
Protein kinase C (PKC) has been implicated in integrin‐mediated spreading and migration. In mammary epithelial cells there is a partial co‐localization between β1 integrin and PKCα. This reflects complexes between these proteins as demonstrated by fluorescense resonance energy transfer (FRET) monitored by fluorescence lifetime imaging microscopy and also by coprecipitation. Constitutive complexes are observed for the intact PKCα and also form with the regulatory domain in an activation‐dependent manner. Expression of PKCα causes upregulation of β1 integrin on the cell surface, whereas stimulation of PKC induces internalization of β1 integrin. The integrin initially traffics to an endosomal compartment in a Ca2+/PI 3‐kinase/dynamin I‐dependent manner and subsequently enters an endocytic recycling pathway. This induction of endocytosis by PKCα is a function of activity and is not observed for the regulatory domain. PKCα, but not PKCα regulatory domain expression stimulates migration on β1 integrin substrates. This PKCα‐enhanced migratory response is inhibited by blockade of endocytosis.
Nature | 2013
Gunther Zimmermann; Björn Papke; Shehab Ismail; Nachiket Vartak; Anchal Chandra; Maike Hoffmann; Stephan A. Hahn; Gemma Triola; Alfred Wittinghofer; Philippe I. H. Bastiaens; Herbert Waldmann
The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS–PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.
Cell | 2010
Oliver Rocks; Marc Gerauer; Nachiket Vartak; Sebastian Koch; Zhi-Ping Huang; Markos Pechlivanis; Jürgen Kuhlmann; Lucas Brunsveld; Anchal Chandra; Bernhard Ellinger; Herbert Waldmann; Philippe I. H. Bastiaens
Reversible S-palmitoylation of cysteine residues critically controls transient membrane tethering of peripheral membrane proteins. Little is known about how the palmitoylation machinery governs their defined localization and function. We monitored the spatially resolved reaction dynamics and substrate specificity of the core mammalian palmitoylation machinery using semisynthetic substrates. Palmitoylation is detectable only on the Golgi, whereas depalmitoylation occurs everywhere in the cell. The reactions are not stereoselective and lack any primary consensus sequence, demonstrating that substrate specificity is not essential for de-/repalmitoylation. Both palmitate attachment and removal require seconds to accomplish. This reaction topography and rapid kinetics allows the continuous redirection of mislocalized proteins via the post-Golgi sorting apparatus. Unidirectional secretion ensures the maintenance of a proper steady-state protein distribution between the Golgi and the plasma membrane, which are continuous with endosomes. This generic spatially organizing system differs from conventional receptor-mediated targeting mechanisms and efficiently counteracts entropy-driven redistribution of palmitoylated peripheral membrane proteins over all membranes.
The EMBO Journal | 2001
Tony Ng; Maddy Parsons; William E. Hughes; James Monypenny; Daniel Zicha; Alexis Gautreau; Monique Arpin; Steve Gschmeissner; Peter J. Verveer; Philippe I. H. Bastiaens; Peter J. Parker
Protein kinase C (PKC) α has been implicated in β1 integrin‐mediated cell migration. Stable expression of PKCα is shown here to enhance wound closure. This PKC‐driven migratory response directly correlates with increased C‐terminal threonine phosphorylation of ezrin/moesin/radixin (ERM) at the wound edge. Both the wound migratory response and ERM phosphorylation are dependent upon the catalytic function of PKC and are susceptible to inhibition by phosphatidylinositol 3‐kinase blockade. Upon phorbol 12,13‐dibutyrate stimulation, green fluorescent protein–PKCα and β1 integrins co‐sediment with ERM proteins in low‐density sucrose gradient fractions that are enriched in transferrin receptors. Using fluorescence lifetime imaging microscopy, PKCα is shown to form a molecular complex with ezrin, and the PKC‐co‐precipitated endogenous ERM is hyperphosphorylated at the C‐terminal threonine residue, i.e. activated. Electron microscopy showed an enrichment of both proteins in plasma membrane protrusions. Finally, overexpression of the C‐terminal threonine phosphorylation site mutant of ezrin has a dominant inhibitory effect on PKCα‐induced cell migration. We provide the first evidence that PKCα or a PKCα‐associated serine/threonine kinase can phosphorylate the ERM C‐terminal threonine residue within a kinase–ezrin molecular complex in vivo.
The EMBO Journal | 1996
Philippe I. H. Bastiaens; Irina Majoul; Peter J. Verveer; Hans-Dieter Söling; Thomas M. Jovin
The subcellular localization and corresponding quaternary state of fluorescent labelled cholera toxin were determined at different time points after exposure to living cells by a novel form of fluorescence confocal microscopy. The compartmentalization and locus of separation of the pentameric B subunits (CTB) from the A subunit (CTA) of the toxin were evaluated on a pixel‐by‐pixel (voxel‐by‐voxel) basis by measuring the fluorescence resonance energy transfer (FRET) between CTB labelled with the sulfoindocyanine dye Cy3 and an antibody against CTA labelled with Cy5. The FRET efficiency was determined by a new technique based on the release of quenching of the Cy3 donor after photodestruction of the Cy5 acceptor in a region of interest within the cell. The results demonstrate vesicular transport of the holotoxin from the plasma membrane to the Golgi compartment with subsequent separation of the CTA and CTB subunits. The CTA subunit is redirected to the plasma membrane by retrograde transport via the endoplasmic reticulum whereas the CTB subunit persists in the Golgi compartment.
Nature Chemical Biology | 2010
Frank J. Dekker; Oliver Rocks; Nachiket Vartak; Sascha Menninger; Christian Hedberg; Rengarajan Balamurugan; Stefan Wetzel; Steffen Renner; Marc Gerauer; Beate Schölermann; Marion Rusch; John W. Kramer; Daniel Rauh; Geoffrey W. Coates; Luc Brunsveld; Philippe I. H. Bastiaens; Herbert Waldmann
Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization--and thereby unregulated signaling--caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells. The inhibitor, palmostatin B, perturbs the cellular acylation cycle at the level of depalmitoylation and thereby causes a loss of the precise steady-state localization of palmitoylated Ras. As a consequence, palmostatin B induces partial phenotypic reversion in oncogenic HRasG12V-transformed fibroblasts. We identify APT1 as one of the thioesterases in the acylation cycle and show that this protein is a cellular target of the inhibitor.
Nature Cell Biology | 2003
Andrew R. Reynolds; Christian Tischer; Peter J. Verveer; Oliver Rocks; Philippe I. H. Bastiaens
The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase (RTK) superfamily and is involved in regulating cell proliferation, differentiation and motility. Growth factor binding induces receptor oligomerization at the plasma membrane, which leads to activation of the intrinsic RTK activity and trans-phosphorylation of tyrosine residues in the intracellular part of the receptor. These residues are docking sites for proteins containing Src homology domain 2 and phosphotyrosine-binding domains that relay the signal inside the cell. In response to EGF attached to beads, lateral propagation of EGFR phosphorylation occurs at the plasma membrane, representing an early amplification step in EGFR signalling. Here we have investigated an underlying reaction network that couples RTK activity to protein tyrosine phosphatase (PTP) inhibition by reactive oxygen species. Mathematical analysis of the chemical kinetic equations of the minimal reaction network detects general properties of this system that can be observed experimentally by imaging EGFR phosphorylation in cells. The existence of a bistable state in this reaction network explains a threshold response and how a high proportion of phosphorylated receptors can be maintained in plasma membrane regions that are not exposed to ligand.