Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arin B. Aurora is active.

Publication


Featured researches published by Arin B. Aurora.


Developmental Cell | 2008

The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis

Shusheng Wang; Arin B. Aurora; Brett Johnson; Xiaoxia Qi; John McAnally; Joseph A. Hill; James A. Richardson; Rhonda Bassel-Duby; Eric N. Olson

Endothelial cells play essential roles in maintenance of vascular integrity, angiogenesis, and wound repair. We show that an endothelial cell-restricted microRNA (miR-126) mediates developmental angiogenesis in vivo. Targeted deletion of miR-126 in mice causes leaky vessels, hemorrhaging, and partial embryonic lethality, due to a loss of vascular integrity and defects in endothelial cell proliferation, migration, and angiogenesis. The subset of mutant animals that survives displays defective cardiac neovascularization following myocardial infarction. The vascular abnormalities of miR-126 mutant mice resemble the consequences of diminished signaling by angiogenic growth factors, such as VEGF and FGF. Accordingly, miR-126 enhances the proangiogenic actions of VEGF and FGF and promotes blood vessel formation by repressing the expression of Spred-1, an intracellular inhibitor of angiogenic signaling. These findings have important therapeutic implications for a variety of disorders involving abnormal angiogenesis and vascular leakage.


Circulation Research | 2011

miR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes

Enzo R. Porrello; Brett Johnson; Arin B. Aurora; E R Simpson; Young Jae Nam; Scot J. Matkovich; Gerald W. Dorn; Eva van Rooij; Eric N. Olson

Rationale: Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. Objective: Given the potential of microRNAs (miRNAs) to influence large gene networks and modify complex developmental and disease phenotypes, we searched for miRNAs that were regulated during the postnatal switch to terminal differentiation. Methods and Results: Microarray analysis revealed subsets of miRNAs that were upregulated or downregulated in cardiac ventricles from mice at 1 and 10 days of age (P1 and P10). Interestingly, miR-195 (a member of the miR-15 family) was the most highly upregulated miRNA during this period, with expression levels almost 6-fold higher in P10 ventricles relative to P1. Precocious overexpression of miR-195 in the embryonic heart was associated with ventricular hypoplasia and ventricular septal defects in &bgr;-myosin heavy chain–miR-195 transgenic mice. Using global gene profiling and argonaute-2 immunoprecipitation approaches, we showed that miR-195 regulates the expression of a number of cell cycle genes, including checkpoint kinase 1 (Chek1), which we identified as a highly conserved direct target of miR-195. Finally, we demonstrated that knockdown of the miR-15 family in neonatal mice with locked nucleic acid–modified anti-miRNAs was associated with an increased number of mitotic cardiomyocytes and derepression of Chek1. Conclusions: These findings suggest that upregulation of the miR-15 family during the neonatal period may be an important regulatory mechanism governing cardiomyocyte cell cycle withdrawal and binucleation.


Journal of Clinical Investigation | 2014

Macrophages are required for neonatal heart regeneration

Arin B. Aurora; Enzo R. Porrello; Wei Tan; Ahmed I. Mahmoud; Joseph A. Hill; Rhonda Bassel-Duby; Hesham A. Sadek; Eric N. Olson

Myocardial infarction (MI) leads to cardiomyocyte death, which triggers an immune response that clears debris and restores tissue integrity. In the adult heart, the immune system facilitates scar formation, which repairs the damaged myocardium but compromises cardiac function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is lost by P7. The signals that govern neonatal heart regeneration are unknown. By comparing the immune response to MI in mice at P1 and P14, we identified differences in the magnitude and kinetics of monocyte and macrophage responses to injury. Using a cell-depletion model, we determined that heart regeneration and neoangiogenesis following MI depends on neonatal macrophages. Neonates depleted of macrophages were unable to regenerate myocardia and formed fibrotic scars, resulting in reduced cardiac function and angiogenesis. Immunophenotyping and gene expression profiling of cardiac macrophages from regenerating and nonregenerating hearts indicated that regenerative macrophages have a unique polarization phenotype and secrete numerous soluble factors that may facilitate the formation of new myocardium. Our findings suggest that macrophages provide necessary signals to drive angiogenesis and regeneration of the neonatal mouse heart. Modulating inflammation may provide a key therapeutic strategy to support heart regeneration.


Journal of Clinical Investigation | 2012

MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

Arin B. Aurora; Ahmed I. Mahmoud; Xiang Luo; Brett Johnson; Eva van Rooij; Satoshi Matsuzaki; Kenneth M. Humphries; Joseph A. Hill; Rhonda Bassel-Duby; Hesham A. Sadek; Eric N. Olson

Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.


Cell Stem Cell | 2014

Immune Modulation of Stem Cells and Regeneration

Arin B. Aurora; Eric N. Olson

The immune system, best known as the first line of defense against invading pathogens, is integral to tissue development, homeostasis, and wound repair. In recent years, there has been a growing appreciation that cellular and humoral components of the immune system also contribute to regeneration of damaged tissues, including limbs, skeletal muscle, heart, and the nervous system. Here, we discuss key findings that implicate inflammatory cells and their secreted factors in tissue replacement after injury via stem cells and other reparative mechanisms. We highlight clinical conditions that are amenable to immune-mediated regeneration and suggest immune targeting strategies for tissue regeneration.


Journal of The American Society of Nephrology | 2014

MicroRNA-214 Antagonism Protects against Renal Fibrosis

Laura Denby; Vasudev Ramdas; Ruifang Lu; Bryan R. Conway; Jennifer S. Grant; Brent A. Dickinson; Arin B. Aurora; John McClure; David Kipgen; Christian Delles; Eva van Rooij; Andrew H. Baker

Renal tubulointerstitial fibrosis is the common end point of progressive renal disease. MicroRNA (miR)-214 and miR-21 are upregulated in models of renal injury, but the function of miR-214 in this setting and the effect of its manipulation remain unknown. We assessed the effect of inhibiting miR-214 in an animal model of renal fibrosis. In mice, genetic deletion of miR-214 significantly attenuated interstitial fibrosis induced by unilateral ureteral obstruction (UUO). Treatment of wild-type mice with an anti-miR directed against miR-214 (anti-miR-214) before UUO resulted in similar antifibrotic effects, and in vivo biodistribution studies demonstrated that anti-miR-214 accumulated at the highest levels in the kidney. Notably, in vivo inhibition of canonical TGF-β signaling did not alter the regulation of endogenous miR-214 or miR-21. Whereas miR-21 antagonism blocked Smad 2/3 activation, miR-214 antagonism did not, suggesting that miR-214 induces antifibrotic effects independent of Smad 2/3. Furthermore, TGF-β blockade combined with miR-214 deletion afforded additional renal protection. These phenotypic effects of miR-214 depletion were mediated through broad regulation of the transcriptional response to injury, as evidenced by microarray analysis. In human kidney tissue, miR-214 was detected in cells of the glomerulus and tubules as well as in infiltrating immune cells in diseased tissue. These studies demonstrate that miR-214 functions to promote fibrosis in renal injury independent of TGF-β signaling in vivo and that antagonism of miR-214 may represent a novel antifibrotic treatment in the kidney.


Clinical Cancer Research | 2009

Short pigment epithelial-derived factor-derived peptide inhibits angiogenesis and tumor growth.

Yelena Mirochnik; Arin B. Aurora; Frank T. Schulze-Hoepfner; Ahmed Deabes; Victor Shifrin; Richard P. Beckmann; Charles Polsky; Olga V. Volpert

Purpose: Pigment epithelial-derived factor (PEDF) is a potent angiogenesis inhibitor with multiple other functions, some of which enhance tumor growth. Our previous studies mapped PEDF antiangiogenic and prosurvival activities to distinct epitopes. This study was aimed to determine the minimal fragment of PEDF, which maintains antiangiogenic and antitumor efficacy. Experimental Design: We analyzed antigenicity, hydrophilicity, and charge distribution of the angioinhibitory epitope (the 34-mer) and designed three peptides covering its COOH terminus, P14, P18, and P23. We analyzed their ability to block endothelial cell chemotaxis and induce apoptosis in vitro and their antiangiogenic activity in vivo. The selected peptide was tested for the antitumor activity against mildly aggressive xenografted prostate carcinoma and highly aggressive renal cell carcinoma. To verify that P18 acts in the same manner as PEDF, we used immunohistochemistry to measure PEDF targets, vascular endothelial growth factor receptor 2, and CD95 ligand expression in P18-treated vasculature. Results: P14 and P18 blocked endothelial cell chemotaxis; P18 and P23 induced apoptosis. P18 showed the highest IC50 and blocked angiogenesis in vivo: P23 was inactive and P14 was proangiogenic. P18 increased the production of CD95 ligand and reduced the expression of vascular endothelial growth factor receptor 2 by the endothelial cells in vivo. In tumor studies, P18 was more effective in blocking the angiogenesis and growth of the prostate cancer than parental 34-mer; in the renal cell carcinoma, P18 strongly decreased angiogenesis and halted the progression of established tumors. Conclusions: P18 is a novel and potent antiangiogenic biotherapeutic agent that has potential to be developed for the treatment of prostate and renal cancer.


International Journal of Cancer | 2007

Androgen receptor targets NFκB and TSP1 to suppress prostate tumor growth in vivo

Thomas Nelius; Stephanie Filleur; Alexander Yemelyanov; Irina Budunova; Emelyn H. Shroff; Yelena Mirochnik; Arin B. Aurora; Dorina Veliceasa; Wuhan Xiao; Zhou Wang; Olga V. Volpert

The androgen role in the maintenance of prostate epithelium is subject to conflicting opinions. While androgen ablation drives the regression of normal and cancerous prostate, testosterone may cause both proliferation and apoptosis. Several investigators note decreased proliferation and stronger response to chemotherapy of the prostate cancer cells stably expressing androgen receptor (AR), however no mechanistic explanation was offered. In this paper we demonstrate in vivo anti‐tumor effect of the AR on prostate cancer growth and identify its molecular mediators. We analyzed the effect of AR on the tumorigenicity of prostate cancer cells. Unexpectedly, the AR‐expressing cells formed tumors in male mice at a much lower rate than the AR‐negative controls. Moreover, the AR‐expressing tumors showed decreased vascularity and massive apoptosis. AR expression lowered the angiogenic potential of cancer cells, by increasing secretion of an anti‐angiogenic protein, thrombospondin‐1. AR activation caused a decrease in RelA, a subunit of the pro‐survival transcription factor NFκB, reduced its nuclear localization and transcriptional activity. This, in turn, diminished the expression of its anti‐apoptotic targets, Bcl‐2 and IL‐6. Increased apoptosis within AR‐expressing tumors was likely due to the NFκB suppression, since it was restricted to the cells lacking nuclear (active) NFκB. Thus we for the first time identified combined decrease of NFκB and increased TSP1 as molecular events underlying the AR anti‐tumor activity in vivo. Our data indicate that intermittent androgen ablation is preferable to continuous withdrawal, a standard treatment for early‐stage prostate cancer.


Journal of Immunology | 2005

Immune Complex-Dependent Remodeling of the Airway Vasculature in Response to a Chronic Bacterial Infection

Arin B. Aurora; Peter Baluk; Dongji Zhang; Sukhvinder S. Sidhu; Gregory Dolganov; Carol Basbaum; Donald M. McDonald; Nigel Killeen

Chronic inflammation in the airways is associated with dramatic architectural changes in the walls of the airways and in the vasculature they contain. In this study, we show that the adaptive immune system is essential for airway remodeling that occurs in mice that are chronically infected with the respiratory pathogen Mycoplasma pulmonis. Angiogenesis, lymphangiogenesis, and epithelial remodeling were greatly reduced in mice that lacked B cells. Substantiating a role for Ab and airway immune complexes, we found that the transfer of immune serum to B cell-deficient mice could reconstitute pathogen-induced angiogenesis. Inflammatory cells recruited to the infected airways were activated by the humoral response, and this activation correlated with the induction of genes for remodeling factors such as vascular endothelial growth factor-D. The results reveal a novel pathway whereby T cell-dependent humoral immunity to a persistent airway infection can induce inflammation-dependent angiogenesis, lymphangiogenesis, and chronic airway pathology.


Circulation Research | 2011

The miR-15 Family Regulates Post-natal Mitotic Arrest of Cardiomyocytes

Enzo R. Porrello; Brett A. Johnson; Arin B. Aurora; E R Simpson; Young Jae Nam; Scot J. Matkovich; Gerald W. Dorn; Eva van Rooij; Eric N. Olson

Rationale: Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. Objective: Given the potential of microRNAs (miRNAs) to influence large gene networks and modify complex developmental and disease phenotypes, we searched for miRNAs that were regulated during the postnatal switch to terminal differentiation. Methods and Results: Microarray analysis revealed subsets of miRNAs that were upregulated or downregulated in cardiac ventricles from mice at 1 and 10 days of age (P1 and P10). Interestingly, miR-195 (a member of the miR-15 family) was the most highly upregulated miRNA during this period, with expression levels almost 6-fold higher in P10 ventricles relative to P1. Precocious overexpression of miR-195 in the embryonic heart was associated with ventricular hypoplasia and ventricular septal defects in &bgr;-myosin heavy chain–miR-195 transgenic mice. Using global gene profiling and argonaute-2 immunoprecipitation approaches, we showed that miR-195 regulates the expression of a number of cell cycle genes, including checkpoint kinase 1 (Chek1), which we identified as a highly conserved direct target of miR-195. Finally, we demonstrated that knockdown of the miR-15 family in neonatal mice with locked nucleic acid–modified anti-miRNAs was associated with an increased number of mitotic cardiomyocytes and derepression of Chek1. Conclusions: These findings suggest that upregulation of the miR-15 family during the neonatal period may be an important regulatory mechanism governing cardiomyocyte cell cycle withdrawal and binucleation.

Collaboration


Dive into the Arin B. Aurora's collaboration.

Top Co-Authors

Avatar

Eric N. Olson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eva van Rooij

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brett Johnson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Hill

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed I. Mahmoud

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

E R Simpson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerald W. Dorn

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge