Arjun M. Gopalaswamy
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arjun M. Gopalaswamy.
Ecology | 2009
J. Andrew Royle; K. Ullas Karanth; Arjun M. Gopalaswamy; N. Samba Kumar
We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.
Ecological Applications | 2009
James E. Hines; James D. Nichols; J. A. Royle; Darryl I. MacKenzie; Arjun M. Gopalaswamy; N. Samba Kumar; Kota Ullas Karanth
Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.
Ecology | 2012
Arjun M. Gopalaswamy; J. Andrew Royle; Mohan Delampady; James D. Nichols; K. Ullas Karanth; David W. Macdonald
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture-recapture data. The model, which combined information, provided the most precise estimate of density (8.5 +/- 1.95 tigers/100 km2 [posterior mean +/- SD]) relative to a model that utilized only one data source (photographic, 12.02 +/- 3.02 tigers/100 km2 and fecal DNA, 6.65 +/- 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
PLOS ONE | 2012
Krithi K. Karanth; Arjun M. Gopalaswamy; Ruth S. DeFries; Natasha Ballal
Mitigating crop and livestock loss to wildlife and improving compensation distribution are important for conservation efforts in landscapes where people and wildlife co-occur outside protected areas. The lack of rigorously collected spatial data poses a challenge to management efforts to minimize loss and mitigate conflicts. We surveyed 735 households from 347 villages in a 5154 km2 area surrounding Kanha Tiger Reserve in India. We modeled self-reported household crop and livestock loss as a function of agricultural, demographic and environmental factors, and mitigation measures. We also modeled self-reported compensation received by households as a function of demographic factors, conflict type, reporting to authorities, and wildlife species involved. Seventy-three percent of households reported crop loss and 33% livestock loss in the previous year, but less than 8% reported human injury or death. Crop loss was associated with greater number of cropping months per year and proximity to the park. Livestock loss was associated with grazing animals inside the park and proximity to the park. Among mitigation measures only use of protective physical structures were associated with reduced livestock loss. Compensation distribution was more likely for tiger related incidents, and households reporting loss and located in the buffer. Average estimated probability of crop loss was 0.93 and livestock loss was 0.60 for surveyed households. Estimated crop and livestock loss and compensation distribution were higher for households located inside the buffer. Our approach modeled conflict data to aid managers in identifying potential conflict hotspots, influential factors, and spatially maps risk probability of crop and livestock loss. This approach could help focus allocation of conservation efforts and funds directed at conflict prevention and mitigation where high densities of people and wildlife co-occur.
PLOS ONE | 2016
Femke Broekhuis; Arjun M. Gopalaswamy
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
PLOS ONE | 2015
Justine S. Alexander; Arjun M. Gopalaswamy; Kun Shi; Philip Riordan
When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality.
Journal of Mammalogy | 2010
Priya Singh; Arjun M. Gopalaswamy; K. Ullas Karanth
Abstract The striped hyena (Hyaena hyaena), despite being a threatened species, frequently occurs in human-dominated landscapes of Indias Rajasthan State. We estimated hyena densities using photographic capture–recapture sampling to identify key ecological factors influencing hyena abundances in such areas. Our 2 study sites (307 km2 in Kumbhalgarh Wildlife Sanctuary and 218 km2 in Esrana Forest Range) had different topographies and levels of human disturbances. We proposed explicit hypotheses regarding effects of livestock densities and topographic features on hyena abundances. We tested these hypotheses by examining the correspondence of estimated hyena densities to food availability in the form of livestock carcasses and potential refugia offered by hilly terrain. Sampling efforts of 548 and 538 camera-trap nights were invested in Kumbhalgarh and Esrana, respectively. Density estimates (hyenas/100 km2) based on capture–recapture sampling were higher (6.5 ± 2.6 SE) for Kumbhalgarh than Esrana (3.67 ± 0.3 SE). Our results supported the prediction that denning refugia in hilly terrain sustain higher hyena densities, but the prediction that higher livestock densities maintain higher hyena densities was not supported. Because the striped hyena is a threatened species for which few data exist, our findings have major potential utility for range-wide conservation of the species.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Karanth Ku; Arjun M. Gopalaswamy; Karanth Kk; Goodrich J; Seidensticker J; Robinson Jg
A recent study of tigers in Chitwan, Nepal (1) stirred controversy by challenging the “source-sink” approach that underlies current global tiger conservation strategies (2). The observed lack of difference in tiger density estimates inside the protected area compared with a multiple-use area outside is offered as evidence. Based on this result, the study questions the relevance of strictly protected tiger reserves involving regulation of extractive uses and relocation of human settlements. The study offers an alternate vision of sustainable, syntopic “coexistence” of tigers and humans as a solution to increasing human resource demands on tiger habitats.
Conservation Biology | 2017
Nicholas B. Elliot; Arjun M. Gopalaswamy
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions.
PLOS ONE | 2016
Justine S. Alexander; Arjun M. Gopalaswamy; Kun Shi; Joelene Hughes; Philip Riordan
Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.