Arko Lucieer
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arko Lucieer.
Remote Sensing | 2012
Darren Turner; Arko Lucieer; Cs Watson
Unmanned Aerial Vehicles (UAVs) are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM) photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP) technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM) required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.
Remote Sensing | 2012
Steve Harwin; Arko Lucieer
Sensor miniaturisation, improved battery technology and the availability of low-cost yet advanced Unmanned Aerial Vehicles (UAV) have provided new opportunities for environmental remote sensing. The UAV provides a platform for close-range aerial photography. Detailed imagery captured from micro-UAV can produce dense point clouds using multi-view stereopsis (MVS) techniques combining photogrammetry and computer vision. This study applies MVS techniques to imagery acquired from a multi-rotor micro-UAV of a natural coastal site in southeastern Tasmania, Australia. A very dense point cloud ( < 1–3 cm point spacing) is produced in an arbitrary coordinate system using full resolution imagery, whereas other studies usually downsample the original imagery. The point cloud is sparse in areas of complex vegetation and where surfaces have a homogeneous texture. Ground control points collected with Differential Global Positioning System (DGPS) are identified and used for georeferencing via a Helmert transformation. This study compared georeferenced point clouds to a Total Station survey in order to assess and quantify their geometric accuracy. The results indicate that a georeferenced point cloud accurate to 25–40 mm can be obtained from imagery acquired from ~50 m. UAV-based image capture provides the spatial and temporal resolution required to map and monitor natural landscapes. This paper assesses the accuracy of the generated point clouds based on field survey points. Based on our key findings we conclude that sub-decimetre terrain change (in this case coastal erosion) can be monitored.
Remote Sensing | 2012
Luke Wallace; Arko Lucieer; Cs Watson; Darren Turner
We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m2) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points perm2, to 0.15mwhen the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
Progress in Physical Geography | 2014
Arko Lucieer; Steven M. de Jong; Darren Turner
In this study, we present a flexible, cost-effective, and accurate method to monitor landslides using a small unmanned aerial vehicle (UAV) to collect aerial photography. In the first part, we apply a Structure from Motion (SfM) workflow to derive a 3D model of a landslide in southeast Tasmania from multi-view UAV photography. The geometric accuracy of the 3D model and resulting DEMs and orthophoto mosaics was tested with ground control points coordinated with geodetic GPS receivers. A horizontal accuracy of 7 cm and vertical accuracy of 6 cm was achieved. In the second part, two DEMs and orthophoto mosaics acquired on 16 July 2011 and 10 November 2011 were compared to study landslide dynamics. The COSI-Corr image correlation technique was evaluated to quantify and map terrain displacements. The magnitude and direction of the displacement vectors derived from correlating two hillshaded DEM layers corresponded to a visual interpretation of landslide change. Results show that the algorithm can accurately map displacements of the toes, chunks of soil, and vegetation patches on top of the landslide, but is not capable of mapping the retreat of the main scarp. The conclusion is that UAV-based imagery in combination with 3D scene reconstruction and image correlation algorithms provide flexible and effective tools to map and monitor landslide dynamics.
IEEE Transactions on Geoscience and Remote Sensing | 2014
Darren Turner; Arko Lucieer; Luke Wallace
Micro-unmanned aerial vehicles often collect a large amount of images when mapping an area at an ultrahigh resolution. A direct georeferencing technique potentially eliminates the need for ground control points. In this paper, we developed a camera-global positioning system (GPS) module to allow the synchronization of camera exposure with the airframes position as recorded by a GPS with 10-20-cm accuracy. Lever arm corrections were applied to the camera positions to account for the positional difference between the GPS antenna and the camera center. Image selection algorithms were implemented to eliminate blurry images and images with excessive overlap. This study compared three different software methods (Photoscan, Pix4D web service, and an in-house Bundler method). We evaluated each based on processing time, ease of use, and the spatial accuracy of the final mosaic produced. Photoscan showed the best performance as it was the fastest and the easiest to use and had the best spatial accuracy (average error of 0.11 m with a standard deviation of 0.02 m). This accuracy is limited by the accuracy of the differential GPS unit (10-20 cm) used to record camera position. Pix4D achieved a mean spatial error of 0.24 m with a standard deviation of 0.03 m, while the Bundler method had the worst mean spatial accuracy of 0.76 m with a standard deviation of 0.15 m. The lower performance of the Bundler method was due to its poor performance in estimating camera focal length, which, in turn, introduced large errors in the Z-axis for the translation equations.
Physics and Chemistry of The Earth Part B-hydrology Oceans and Atmosphere | 2001
A. De Roo; M. Odijk; G. Schmuck; E. Koster; Arko Lucieer
Abstract Recently, dramatic flooding occurred in several regions of the world. To investigate the causes of the flooding and the influence of land use, soil characteristics and antecedent catchment moisture conditions, the distributed catchment model LISFLOOD has been developed. LISFLOOD simulates runoff in large river basins. Two transnational European river basins are used to test and validate the model: the Meuse catchment (France, Belgium, Germany and The Netherlands) and the Oder basin (The Czech Republic, Poland and Germany). In the Meuse and Oder catchment, land use change information over the past 200 years is processed at the moment. The LISFLOOD simulation model is used to simulate the effects of these land use changes on floods. Some influences of land use and vegetation on the water balance are clear, such as the changing vegetation cover (leaf area index) which will influence evapotranspiration. However, not so much is known about the influences of vegetation on soil properties, which influencesinfiltration, soil water redistribution, throughflow and groundwater recharge.
International Journal of Remote Sensing | 2005
Arko Lucieer; A. Stein; Peter F. Fisher
In this study, a segmentation procedure is proposed, based on grey‐level and multivariate texture to extract spatial objects from an image scene. Object uncertainty was quantified to identify transitions zones of objects with indeterminate boundaries. The Local Binary Pattern (LBP) operator, modelling texture, was integrated into a hierarchical splitting segmentation to identify homogeneous texture regions in an image. We proposed a multivariate extension of the standard univariate LBP operator to describe colour texture. The paper is illustrated with two case studies. The first considers an image with a composite of texture regions. The two LBP operators provided good segmentation results on both grey‐scale and colour textures, depicted by accuracy values of 96% and 98%, respectively. The second case study involved segmentation of coastal land cover objects from a multi‐spectral Compact Airborne Spectral Imager (CASI) image, of a coastal area in the UK. Segmentation based on the univariate LBP measure provided unsatisfactory segmentation results from a single CASI band (70% accuracy). A multivariate LBP‐based segmentation of three CASI bands improved segmentation results considerably (77% accuracy). Uncertainty values for object building blocks provided valuable information for identification of object transition zones. We conclude that the (multivariate) LBP texture model in combination with a hierarchical splitting segmentation framework is suitable for identifying objects and for quantifying their uncertainty.
Remote Sensing | 2012
Joshua Kelcey; Arko Lucieer
Unmanned aerial vehicles (UAVs) represent a quickly evolving technology, broadening the availability of remote sensing tools to small-scale research groups across a variety of scientific fields. Development of UAV platforms requires broad technical skills covering platform development, data post-processing, and image analysis. UAV development is constrained by a need to balance technological accessibility, flexibility in application and quality in image data. In this study, the quality of UAV imagery acquired by a miniature 6-band multispectral imaging sensor was improved through the application of practical image-based sensor correction techniques. Three major components of sensor correction were focused upon: noise reduction, sensor-based modification of incoming radiance, and lens distortion. Sensor noise was reduced through the use of dark offset imagery. Sensor modifications through the effects of filter transmission rates, the relative monochromatic efficiency of the sensor and the effects of vignetting were removed through a combination of spatially/spectrally dependent correction factors. Lens distortion was reduced through the implementation of the Brown–Conrady model. Data post-processing serves dual roles in data quality improvement, and the identification of platform limitations and sensor idiosyncrasies. The proposed corrections improve the quality of the raw multispectral imagery, facilitating subsequent quantitative image analysis.
Journal of Field Robotics | 2014
Arko Lucieer; Zbyněk Malenovský; Tony Veness; Luke Wallace
One of the key advantages of a low-flying unmanned aircraft system UAS is its ability to acquire digital images at an ultrahigh spatial resolution of a few centimeters. Remote sensing of quantitative biochemical and biophysical characteristics of small-sized spatially fragmented vegetation canopies requires, however, not only high spatial, but also high spectral i.e., hyperspectral resolution. In this paper, we describe the design, development, airborne operations, calibration, processing, and interpretation of image data collected with a new hyperspectral unmanned aircraft system HyperUAS. HyperUAS is a remotely controlled multirotor prototype carrying onboard a lightweight pushbroom spectroradiometer coupled with a dual frequency GPS and an inertial movement unit. The prototype was built to remotely acquire imaging spectroscopy data of 324 spectral bands 162 bands in a spectrally binned mode with bandwidths between 4 and 5i¾?nm at an ultrahigh spatial resolution of 2-5i¾?cm. Three field airborne experiments, conducted over agricultural crops and over natural ecosystems of Antarctic mosses, proved operability of the system in standard field conditions, but also in a remote and harsh, low-temperature environment of East Antarctica. Experimental results demonstrate that HyperUAS is capable of delivering georeferenced maps of quantitative biochemical and biophysical variables of vegetation and of actual vegetation health state at an unprecedented spatial resolution of 5i¾?cm.
International Journal of Applied Earth Observation and Geoinformation | 2010
Humphrey Murray; Arko Lucieer; Rn Williams
This study was the first to use high-resolution IKONOS imagery to classify vegetation communities on sub-Antarctic Heard Island. We focused on the use of texture measures, in addition to standard multispectral information, to improve the classification of sub-Antarctic vegetation communities. Heard Island’s pristine and rapidly changing environment makes it a relevant and exciting location to study the regional effects of climate change. This study uses IKONOS imagery to provide automated, up-to-date, and non-invasive means to map vegetation as an important indicator for environmental change. Three classification techniques were compared: multispectral classification, texture based classification, and a combination of both. Texture features were calculated using the Grey Level Co-occurrence Matrix (GLCM). We investigated the effect of the texture window size on classification accuracy. The combined approach produced a higher accuracy than using multispectral bands alone. It was also found that the selection of GLCM texture features is critical. The highest accuracy (85%) was produced using all original spectral bands and three uncorrelated texture features. Incorporating texture improved classification accuracy by 6%.