Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arlene H. Sharpe is active.

Publication


Featured researches published by Arlene H. Sharpe.


Nature | 2006

Restoring function in exhausted CD8 T cells during chronic viral infection.

Daniel L. Barber; E. John Wherry; David Masopust; Baogong Zhu; James P. Allison; Arlene H. Sharpe; Gordon J. Freeman; Rafi Ahmed

Functional impairment of antigen-specific T cells is a defining characteristic of many chronic infections, but the underlying mechanisms of T-cell dysfunction are not well understood. To address this question, we analysed genes expressed in functionally impaired virus-specific CD8 T cells present in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), and compared these with the gene profile of functional memory CD8 T cells. Here we report that PD-1 (programmed death 1; also known as Pdcd1) was selectively upregulated by the exhausted T cells, and that in vivo administration of antibodies that blocked the interaction of this inhibitory receptor with its ligand, PD-L1 (also known as B7-H1), enhanced T-cell responses. Notably, we found that even in persistently infected mice that were lacking CD4 T-cell help, blockade of the PD-1/PD-L1 inhibitory pathway had a beneficial effect on the ‘helpless’ CD8 T cells, restoring their ability to undergo proliferation, secrete cytokines, kill infected cells and decrease viral load. Blockade of the CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitory pathway had no effect on either T-cell function or viral control. These studies identify a specific mechanism of T-cell exhaustion and define a potentially effective immunological strategy for the treatment of chronic viral infections.


Annual Review of Immunology | 2008

PD-1 and Its Ligands in Tolerance and Immunity

Mary E. Keir; Manish J. Butte; Gordon J. Freeman; Arlene H. Sharpe

Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, deliver inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. Immune responses to foreign and self-antigens require specific and balanced responses to clear pathogens and tumors and yet maintain tolerance. Induction and maintenance of T cell tolerance requires PD-1, and its ligand PD-L1 on nonhematopoietic cells can limit effector T cell responses and protect tissues from immune-mediated tissue damage. The PD-1:PD-L pathway also has been usurped by microorganisms and tumors to attenuate antimicrobial or tumor immunity and facilitate chronic infection and tumor survival. The identification of B7-1 as an additional binding partner for PD-L1, together with the discovery of an inhibitory bidirectional interaction between PD-L1 and B7-1, reveals new ways the B7:CD28 family regulates T cell activation and tolerance. In this review, we discuss current understanding of the immunoregulatory functions of PD-1 and its ligands and their therapeutic potential.


Immunity | 1995

Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4

Elizabeth A. Tivol; Frank Borriello; A.Nicola Schweitzer; William P. Lynch; Jeffrey A. Bluestone; Arlene H. Sharpe

The B7-CD28/CTLA-4 costimulatory pathway can provide a signal pivotal for T cell activation. Signaling through this pathway is complex due to the presence of two B7 family members, B7-1 and B7-2, and two counterreceptors, CD28 and CTLA-4. Studies with anti-CTLA-4 monoclonal antibodies have suggested both positive and negative roles for CTLA-4 in T cell activation. To elucidate the in vivo function of CTLA-4, we generated CTLA-4-deficient mice. These mice rapidly develop lymphoproliferative disease with multiorgan lymphocytic infiltration and tissue destruction, with particularly severe myocarditis and pancreatitis, and die by 3-4 weeks of age. The phenotype of the CTLA-4-deficient mouse strain is supported by studies that have suggested a negative role for CTLA-4 in T cell activation. The severe phenotype of mice lacking CTLA-4 implies a critical role for CTLA-4 in down-regulating T cell activation and maintaining immunologic homeostasis. In the absence of CTLA-4, peripheral T cells are activated, can spontaneously proliferate, and may mediate lethal tissue injury.


Immunity | 2000

B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes

Benoît L. Salomon; Deborah J. Lenschow; Lesley Rhee; Neda Ashourian; Bhagarith Singh; Arlene H. Sharpe; Jeffrey A. Bluestone

CD28/B7 costimulation has been implicated in the induction and progression of autoimmune diseases. Experimentally induced models of autoimmunity have been shown to be prevented or reduced in intensity in mice rendered deficient for CD28 costimulation. In sharp contrast, spontaneous diabetes is exacerbated in both B7-1/B7-2-deficient and CD28-deficient NOD mice. These mice present a profound decrease of the immunoregulatory CD4+CD25+ T cells, which control diabetes in prediabetic NOD mice. These cells are absent from both CD28KO and B7-1/B7-2KO mice, and the transfer of this regulatory T cell subset from control NOD animals into CD28-deficient animals can delay/prevent diabetes. The results suggest that the CD28/ B7 costimulatory pathway is essential for the development and homeostasis of regulatory T cells that control spontaneous autoimmune diseases.


Nature | 1999

p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development.

Annie Yang; Ronen Schweitzer; Deqin Sun; Mourad Kaghad; Nancy Walker; Roderick T. Bronson; Cliff Tabin; Arlene H. Sharpe; Daniel Caput; Christopher P. Crum; Frank McKeon

The p63 gene, a homologue of the tumour-suppressor p53 (refs 1–5), is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63 −/− mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.


Nature Immunology | 2001

PD-L2 is a second ligand for PD-1 and inhibits T cell activation.

Yvette Latchman; Clive Wood; Tatyana Chernova; Divya Chaudhary; Madhuri Borde; Irene Chernova; Yoshiko Iwai; Andrew J. Long; Julia Brown; Raquel Nunes; Edward A. Greenfield; Karen Bourque; Vassiliki A. Boussiotis; Laura Carter; Beatriz M. Carreno; Nelly Malenkovich; Hiroyuki Nishimura; Taku Okazaki; Tasuku Honjo; Arlene H. Sharpe; Gordon J. Freeman

Programmed death 1 (PD-1)–deficient mice develop a variety of autoimmune-like diseases, which suggests that this immunoinhibitory receptor plays an important role in tolerance. We identify here PD-1 ligand 2 (PD-L2) as a second ligand for PD-1 and compare the function and expression of PD-L1 and PD-L2. Engagement of PD-1 by PD-L2 dramatically inhibits T cell receptor (TCR)-mediated proliferation and cytokine production by CD4+ T cells. At low antigen concentrations, PD-L2–PD-1 interactions inhibit strong B7-CD28 signals. In contrast, at high antigen concentrations, PD-L2–PD-1 interactions reduce cytokine production but do not inhibit T cell proliferation. PD-L–PD-1 interactions lead to cell cycle arrest in G0/G1 but do not increase cell death. In addition, ligation of PD-1 + TCR leads to rapid phosphorylation of SHP-2, as compared to TCR ligation alone. PD-L expression was up-regulated on antigen-presenting cells by interferon γ treatment and was also present on some normal tissues and tumor cell lines. Taken together, these studies show overlapping functions of PD-L1 and PD-L2 and indicate a key role for the PD-L–PD-1 pathway in regulating T cell responses.


Nature Reviews Immunology | 2002

The B7–CD28 superfamily

Arlene H. Sharpe; Gordon J. Freeman

The B7-1/B7-2–CD28/CTLA-4 pathway is crucial in regulating T-cell activation and tolerance. New B7 and CD28 molecules have recently been discovered and new pathways have been delineated that seem to be important for regulating the responses of previously activated T cells. Several B7 homologues are expressed on cells other than professional antigen-presenting cells, indicating new mechanisms for regulating T-cell responses in peripheral tissues. Some B7 homologues have unknown receptors, indicating that other immunoregulatory pathways remain to be described. Here, we summarize our current understanding of the new members of the B7 and CD28 families, and discuss their therapeutic potential.


Molecular and Cellular Biology | 2000

Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice

Lori D. Klaman; Olivier Boss; Odile D. Peroni; Jason K. Kim; Jennifer L. Martino; Janice M. Zabolotny; Nadeem Moghal; Margaret Lubkin; Young-Bum Kim; Arlene H. Sharpe; Alain Stricker-Krongrad; Gerald I. Shulman; Benjamin G. Neel; Barbara B. Kahn

ABSTRACT Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.


Journal of Experimental Medicine | 2009

PD-L1 regulates the development, maintenance, and function of induced regulatory T cells

Loise M. Francisco; Victor Salinas; Keturah E. Brown; Vijay K. Vanguri; Gordon J. Freeman; Vijay K. Kuchroo; Arlene H. Sharpe

Both the programmed death (PD) 1–PD-ligand (PD-L) pathway and regulatory T (T reg) cells are instrumental to the maintenance of peripheral tolerance. We demonstrate that PD-L1 has a pivotal role in regulating induced T reg (iT reg) cell development and sustaining iT reg cell function. PD-L1−/− antigen-presenting cells minimally convert naive CD4 T cells to iT reg cells, showing the essential role of PD-L1 for iT reg cell induction. PD-L1–coated beads induce iT reg cells in vitro, indicating that PD-L1 itself regulates iT reg cell development. Furthermore, PD-L1 enhances and sustains Foxp3 expression and the suppressive function of iT reg cells. The obligatory role for PD-L1 in controlling iT reg cell development and function in vivo is illustrated by a marked reduction in iT reg cell conversion and rapid onset of a fatal inflammatory phenotype in PD-L1−/−PD-L2−/− Rag−/− recipients of naive CD4 T cells. PD-L1 iT reg cell development is mediated through the down-regulation of phospho-Akt, mTOR, S6, and ERK2 and concomitant with the up-regulation of PTEN, all key signaling molecules which are critical for iT reg cell development. Thus, PD-L1 can inhibit T cell responses by promoting both the induction and maintenance of iT reg cells. These studies define a novel mechanism for iT reg cell development and function, as well as a new strategy for controlling T reg cell plasticity.


Nature | 2000

p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours.

Annie Yang; Nancy Walker; Roderick T. Bronson; Mourad Kaghad; Mariëtte A. Oosterwegel; Jacques Bonnin; Christine Vagner; Helene Bonnet; Pieter Dikkes; Arlene H. Sharpe; Frank McKeon; Daniel Caput

p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2,3,4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers, and the ability of p73 to transactivate p53 target genes, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.

Collaboration


Dive into the Arlene H. Sharpe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay K. Kuchroo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Loise M. Francisco

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. John Wherry

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Barber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Didier A. Mandelbrot

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Mohamed H. Sayegh

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge