Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arman Ahnood is active.

Publication


Featured researches published by Arman Ahnood.


Proceedings of the IEEE | 2012

Flexible Electronics: The Next Ubiquitous Platform

Arokia Nathan; Arman Ahnood; Matthew T. Cole; Sungsik Lee; Yuji Suzuki; Pritesh Hiralal; Francesco Bonaccorso; Tawfique Hasan; Luis Garcia-Gancedo; Andriy Dyadyusha; Samiul Haque; Piers Andrew; Stephan Hofmann; James Moultrie; Daping Chu; Andrew J. Flewitt; A. C. Ferrari; M. J. Kelly; J. Robertson; G.A.J. Amaratunga; W. I. Milne

Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks.


Advanced Materials | 2011

Complementary Metal Oxide Semiconductor Technology With and On Paper

Rodrigo Martins; Arokia Nathan; Raquel Barros; L. Pereira; Pedro Barquinha; Nuno Correia; Ricardo Costa; Arman Ahnood; I. Ferreira; Elvira Fortunato

One of today’s challenges in electronics is to produce portable, fl exible, low cost, and easily recyclable products, [ 1 ] such as paper [ 2 ] since they do not require the high process temperatures used in crystalline silicon (c-Si) technologies. In addition, the devices should have low power energy consumption to allow densely packed integrated circuits for a plethora of applications such as computer memory chips, digital logic and microprocessors, to (linear) analogue circuits, among others, to fuel the next-generation microelectronics revolution for information and communication technologies. [ 3 ] For illustrative purposes, we consider a temporary register as an example. In a static circuit the contents of the register remain fi xed until new information arrives to be stored and remains active unless the power goes out or the computer is turned off. In a dynamic circuit, the contents of the register leak away and must be periodically refreshed. The advantage of dynamic circuits is that they do not draw current between refreshing; the disadvantage is that refreshing requires additional circuitry including clocks to synchronize the refresh cycle with the operation of the register. [ 3 , 4 ]


Applied Physics Letters | 2009

Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements

Arman Ahnood; G. Reza Chaji; Andrei Sazonov; Arokia Nathan

The field effect (FE) mobility of thin film transistors is normally extracted using static measurement methods, which inherently rely on the assumption that the device remains stable during the measurement duration. However, these devices, particularly those based on emerging materials, can show large instability during the measurement, typically exhibiting hysteresis in the static characteristics. This letter looks at the effect of threshold voltage shift in FE mobility extracted using the conventional method, and introduces an alternative and more accurate technique of measuring device characteristics. The technique decouples the effect of transient phenomena, thus permitting extraction of the true device FE mobility, which turns out to be either over or underestimated depending on the magnitude and direction of threshold voltage shift.


Nature Biotechnology | 2016

Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity

Thomas J. Oxley; Nicholas L. Opie; Sam E. John; Gil S. Rind; Stephen M. Ronayne; Tracey Wheeler; Jack W. Judy; Alan James McDonald; Anthony Dornom; Timothy John Haynes Lovell; Christopher Steward; David J. Garrett; Bradford A. Moffat; E. Lui; Nawaf Yassi; Bruce C.V. Campbell; Yan T. Wong; Kate Fox; Ewan S. Nurse; Iwan E. Bennett; Sébastien H. Bauquier; Kishan Liyanage; Nicole R. van der Nagel; Piero Perucca; Arman Ahnood; Katherine P. Gill; Bernard Yan; Leonid Churilov; Chris French; Patricia Desmond

High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.


IEEE Electron Device Letters | 2012

Analytical Field-Effect Method for Extraction of Subgap States in Thin-Film Transistors

Sungsik Lee; Arman Ahnood; Sanjiv Sambandan; Arun Madan; Arokia Nathan

We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.


Applied Physics Letters | 2008

Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors

Arman Ahnood; Khashayar Ghaffarzadeh; Arokia Nathan; Peyman Servati; Flora M. Li; Mohammad R. Esmaeili-Rad; Andrei Sazonov

Contact resistance has a significant impact on the electrical characteristics of thin film transistors. It limits their maximum on-current and affects their subsequent behavior with bias. This distorts the extracted device parameters, in particular, the field-effect mobility. This letter presents a method capable of accounting for both the non-ohmic (nonlinear) and ohmic (linear) contact resistance effects solely based upon terminal I-V measurements. Applying our analysis to a nanocrystalline silicon thin film transistor, we demonstrate that contact resistance effects can lead to a twofold underestimation of the field-effect mobility.


Philosophical Magazine | 2009

Light-induced metastability in thin nanocrystalline silicon films

Marius Bauza; N P Mandal; Arman Ahnood; Andrei Sazonov; Arokia Nathan

This paper examines the influence of light-induced metastability on conduction in thin nc-Si:H films. To investigate the role of surface effects, two sample types are considered: one with the surface intentionally oxidized to form an oxide cap layer and the other with etched oxide layer. Both the Staebler–Wronski effect (SWE) and persistent photo-current (PPC) have been observed, albeit at different phases of light soaking. For the nc-Si:H sample with a cap layer, we attribute the presence of SWE and PPC to defect generation and interface charge trapping, while, in the absence of the cap layer, these effects could be caused by unidentified photo-structural changes and defect generation.


IEEE\/OSA Journal of Display Technology | 2010

Photo-Induced Instability of Nanocrystalline Silicon TFTs

Marius Bauza; Arman Ahnood; Flora M. Li; Yuriy Vygranenko; Mohammad R. Esmaeili-Rad; Gholamreza Chaji; Andrei Sazonov; J. Robertson; W. I. Milne; Arokia Nathan

We examine the instability behavior of nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) in the presence of electrical and optical stress. The change in threshold voltage and sub-threshold slope is more significant under combined bias-and-light stress when compared to bias stress alone. The threshold voltage shift after 6 h of bias stress is about 7 times larger in the case with illumination than in the dark. Under bias stress alone, the primary instability mechanism is charge trapping at the semiconductor/insulator interface. In contrast, under combined bias-and-light stress, the prevailing mechanism appears to be the creation of defect states in the channel, and believed to take place in the amorphous phase, where the increase in the electron density induced by electrical bias enhances the non-radiative recombination of photo-excited electron-hole pairs. The results reported here are consistent with observations of photo-induced efficiency degradation in solar cells.


Biosensors and Bioelectronics | 2016

Diamond encapsulated photovoltaics for transdermal power delivery

Arman Ahnood; Kate Fox; Nicholas V. Apollo; Alexander Lohrmann; David J. Garrett; David A. X. Nayagam; Timothy J. Karle; Alastair Stacey; Keren M. Abberton; Wayne A. Morrison; Andrew Blakers; Steven Prawer

A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cells external quantum efficiency, the skins transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants.


Artificial Organs | 2016

Development of a Magnetic Attachment Method for Bionic Eye Applications

Kate Fox; Hamish Meffin; Owen Burns; Carla J. Abbott; Penelope J. Allen; Nicholas L. Opie; Ceara McGowan; Jonathan Yeoh; Arman Ahnood; Chi D. Luu; Rosemary Cicione; Alexia L. Saunders; Michelle McPhedran; Lisa Cardamone; Joel Villalobos; David J. Garrett; David A. X. Nayagam; Nicholas V. Apollo; Kumaravelu Ganesan; Mohit N. Shivdasani; Alastair Stacey; Mathilde Escudie; Samantha Lichter; Robert K. Shepherd; Steven Prawer

Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.

Collaboration


Dive into the Arman Ahnood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungsik Lee

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge