Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alastair Stacey is active.

Publication


Featured researches published by Alastair Stacey.


Nature Nanotechnology | 2011

Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells

Liam P. McGuinness; Yan Yan; Alastair Stacey; David A. Simpson; Liam T. Hall; D. Maclaurin; Steven Prawer; Paul Mulvaney; Jörg Wrachtrup; Frank Caruso; R. E. Scholten; Lloyd C. L. Hollenberg

Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.


Nano Letters | 2007

Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals

James R. Rabeau; Alastair Stacey; A. Rabeau; Steven Prawer; Fedor Jelezko; I. Mirza; Jörg Wrachtrup

Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60-70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.


Nano Letters | 2009

Two-level ultrabright single photon emission from diamond nanocrystals

Igor Aharonovich; Stefania Castelletto; David A. Simpson; Alastair Stacey; J. C. McCallum; Andrew D. Greentree; Steven Prawer

The fabrication of stable ultrabright single photon sources operating at room temperature is reported. The emitter is based on a color center within a diamond nanocrystal grown on a sapphire substrate by chemical vapor deposition method and exhibits a two-level electronic behavior with a maximum measured count rate of 3.2 x 10(6) counts/s at saturation. The emission is centered at approximately 756 nm with a full width at half-maximum approximately 11 nm and an excited state lifetime of 3.7 ns. These unique properties make it a leading candidate for quantum photonics and communication applications as well as for cellular biomarking.


Nature Communications | 2014

Nuclear magnetic resonance spectroscopy with single spin sensitivity

Christoph Müller; Xi Kong; Jianming Cai; K. Melentijević; Alastair Stacey; Matthew Markham; Daniel Twitchen; Junichi Isoya; S. Pezzagna; Jan Meijer; Jiangfeng Du; Martin B. Plenio; Boris Naydenov; Liam P. McGuinness; Fedor Jelezko

Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds.


Physical Review Letters | 2015

Spectroscopy of surface-induced noise using shallow spins in diamond

Y. Romach; Christoph Müller; Thomas Unden; Lachlan J. Rogers; Taiga Isoda; Kohei M. Itoh; Matthew Markham; Alastair Stacey; Jan Meijer; S. Pezzagna; Boris Naydenov; Liam P. McGuinness; Nir Bar-Gill; Fedor Jelezko

We report on the noise spectrum experienced by few nanometer deep nitrogen-vacancy centers in diamond as a function of depth, surface coating, magnetic field and temperature. Analysis reveals a double-Lorentzian noise spectrum consistent with a surface electronic spin bath in the low frequency regime, along with a faster noise source attributed to surface-modified phononic coupling. These results shed new light on the mechanisms responsible for surface noise affecting shallow spins at semiconductor interfaces, and suggests possible directions for further studies. We demonstrate dynamical decoupling from the surface noise, paving the way to applications ranging from nanoscale NMR to quantum networks.


Nano Letters | 2014

Coherent optical transitions in implanted nitrogen vacancy centers

Yiwen Chu; N. P. de Leon; Brendan Shields; Birgit Hausmann; Ruffin E. Evans; E. Togan; Michael J. Burek; Matthew Markham; Alastair Stacey; A. S. Zibrov; Amir Yacoby; Daniel Twitchen; Marko Loncar; Hongkun Park; Patrick Maletinsky; Mikhail D. Lukin

We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.


Journal of Neural Engineering | 2012

Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications

David J. Garrett; Kumaravelu Ganesan; Alastair Stacey; Kate Fox; Hamish Meffin; Steven Prawer

Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.


New Journal of Physics | 2013

Ambient nanoscale sensing with single spins using quantum decoherence

Liam P. McGuinness; Liam T. Hall; Alastair Stacey; David A. Simpson; Charles D. Hill; Jared H. Cole; Kumaravelu Ganesan; Brant C. Gibson; Steven Prawer; Paul Mulvaney; Fedor Jelezko; Jörg Wrachtrup; R. E. Scholten; Lloyd C. L. Hollenberg

Magnetic resonance detection is one of the most important tools used in life-sciences today. However, as the technique detects the magnetization of large ensembles of spins it is fundamentally limited in spatial resolution to mesoscopic scales. Here we detect the natural fluctuations of nanoscale spin ensembles at ambient temperatures by measuring the decoherence rate of a single quantum spin in response to introduced extrinsic target spins. In our experiments 45?nm nanodiamonds with single nitrogen?vacancy (NV) spins were immersed in solution containing spin 5/2 Mn2+ ions and the NV decoherence rate measured though optically detected magnetic resonance. The presence of both freely moving and accreted Mn spins in solution were detected via significant changes in measured NV decoherence rates. Analysis of the data using a quantum cluster expansion treatment of the NV-target system found the measurements to be consistent with the detection of ?2500 motionally diffusing Mn spins over an effective volume of (16?nm)3 in 4.2?s, representing a reduction in target ensemble size and acquisition time of several orders of magnitude over conventional, magnetic induction approaches to electron spin resonance detection. These measurements provide the basis for the detection of nanovolume spins in solution, such as in the internal compartments of living cells, and are directly applicable to scanning probe architectures.


Journal of Applied Physics | 2011

Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing

J. O. Orwa; Charles Santori; Kai Mei C Fu; Brant C. Gibson; David A. Simpson; Igor Aharonovich; Alastair Stacey; A. Cimmino; P. Balog; Matthew Markham; Daniel Twitchen; Andrew D. Greentree; R. G. Beausoleil; Steven Prawer

The negatively-charged nitrogen-vacancy (NV) center is the most studied optical center in diamond and is very important for applications in quantum information science. Many proposals for integrating NV centers in quantum and sensing applications rely on their tailored fabrication in ultra pure host material. In this study, we use ion implantation to controllably introduce nitrogen into high purity, low nitrogen chemical vapor deposition diamond samples. The properties of the resulting NV centers are studied as a function of implantation temperature, annealing temperature, and implantation fluence. We compare the implanted NV centers with native NV centers present deep in the bulk of the as-grown samples. The results for implanted NV centers are promising but indicate, at this stage, that the deep native NV centers possess overall superior optical properties. In particular, the implanted NV centers obtained after annealing at 2000 °C under a stabilizing pressure of 8 GPa showed an ensemble linewidth of 0....


Nature Communications | 2015

A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases

Nikolai Dontschuk; Alastair Stacey; Anton Tadich; Kevin J Rietwyk; Alex Schenk; Mark Thomas Edmonds; Olga Shimoni; C. I. Pakes; Steven Prawer; Jiri Cervenka

Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene.

Collaboration


Dive into the Alastair Stacey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Hoffman

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liam T. Hall

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge