Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armand Séguin is active.

Publication


Featured researches published by Armand Séguin.


Trends in Biotechnology | 2001

Recent advances in the genetic transformation of trees

Leandro Peña; Armand Séguin

As the commercial production of transgenic annual crops becomes a reality in many parts of the world, many people wonder if the genetic engineering of perennial trees will allow their eventual commercialization. Not long ago, trees were considered to be recalcitrant material for most molecular biology techniques, including genetic transformation. However, transgenes for shortening the juvenile phase or for phytoremediation purposes have now been incorporated, and the alteration of lignin biosynthesis and increased cellulose accumulation in forest trees have also been accomplished. For long-lived tree species, new questions arise regarding the stability of integration and expression of foreign genes. Biosafety considerations, including transgene dispersion through the pollen and advances in strategies to avoid this, are also important.


Journal of Experimental Botany | 2008

Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis

Claude Bomal; Frank Bedon; Sébastien Caron; Shawn D. Mansfield; Caroline Levasseur; Janice E. K. Cooke; Sylvie Blais; Laurence Tremblay; Marie-Josée Morency; Nathalie Pavy; Jacqueline Grima-Pettenati; Armand Séguin; John MacKay

The involvement of two R2R3-MYB genes from Pinus taeda L., PtMYB1 and PtMYB8, in phenylpropanoid metabolism and secondary cell wall biogenesis was investigated in planta. These pine MYBs were constitutively overexpressed (OE) in Picea glauca (Moench) Voss, used as a heterologous conifer expression system. Morphological, histological, chemical (lignin and soluble phenols), and transcriptional analyses, i.e. microarray and reverse transcription quantitative PCR (RT-qPCR) were used for extensive phenotyping of MYB-overexpressing spruce plantlets. Upon germination of somatic embryos, root growth was reduced in both transgenics. Enhanced lignin deposition was also a common feature but ectopic secondary cell wall deposition was more strongly associated with PtMYB8-OE. Microarray and RT-qPCR data showed that overexpression of each MYB led to an overlapping up-regulation of many genes encoding phenylpropanoid enzymes involved in lignin monomer synthesis, while misregulation of several cell wall-related genes and other MYB transcription factors was specifically associated with PtMYB8-OE. Together, the results suggest that MYB1 and MYB8 may be part of a conserved transcriptional network involved in secondary cell wall deposition in conifers.


Plant Physiology | 2003

Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants

Richard Sibout; Aymerick Eudes; Brigitte Pollet; Thomas Goujon; Isabelle Mila; Fabienne Granier; Armand Séguin; Catherine Lapierre; Lise Jouanin

Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units.


Plant Physiology | 2011

Evolution of Diterpene Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of Conifer Defense against Insects

Bjoern Hamberger; Toshiyuki Ohnishi; Britta Hamberger; Armand Séguin; Joerg Bohlmann

Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism.


New Phytologist | 2010

EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar

Sylvain Legay; Pierre Sivadon; Anne-Sophie Blervacq; Nathalie Pavy; Ahmad Baghdady; Laurence Tremblay; Caroline Levasseur; Nathalie Ladouce; Catherine Lapierre; Armand Séguin; Simon Hawkins; John MacKay; Jacqueline Grima-Pettenati

• The eucalyptus R2R3 transcription factor, EgMYB1 contains an active repressor motif in the regulatory domain of the predicted protein. It is preferentially expressed in differentiating xylem and is capable of repressing the transcription of two key lignin genes in vivo. • In order to investigate in planta the role of this putative transcriptional repressor of the lignin biosynthetic pathway, we overexpressed the EgMYB1 gene in Arabidopsis and poplar. • Expression of EgMYB1 produced similar phenotypes in both species, with stronger effects in transgenic Arabidopsis plants than in poplar. Vascular development was altered in overexpressors showing fewer lignified fibres (in phloem and interfascicular zones in poplar and Arabidopsis, respectively) and reduced secondary wall thickening. Klason lignin content was moderately but significantly reduced in both species. Decreased transcript accumulation was observed for genes involved in the biosynthesis of lignins, cellulose and xylan, the three main polymers of secondary cell walls. Transcriptomic profiles of transgenic poplars were reminiscent of those reported when lignin biosynthetic genes are disrupted. • Together, these results strongly suggest that EgMYB1 is a repressor of secondary wall formation and provide new opportunities to dissect the transcriptional regulation of secondary wall biosynthesis.


Molecular Breeding | 1999

Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens

V. Levée; E. Garin; Krystyna Klimaszewska; Armand Séguin

A genetic transformation procedure for white pine has been developed after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. This efficient transformation procedure led to an average of four independent transformed lines per gram of cocultivated embryogenic tissue and up to 50 transformed lines can be obtained in a routine experiment. Constructs bearing the uidA gene or the green fluorescent protein (GFP) gene were introduced and β-glucuronidase (GUS) activity was followed over time. The expression of the uidA gene was lowest with a 35S-gus-intron construct and was 20-fold higher with a 35S-35S-AMVgus::nptII construct. The addition of scaffold attachment region (SAR) sequences surrounding the gus::nptII fusion did not significantly enhance the GUS activity. Transformed mature somatic embryos have been germinated and plantlets are presently being acclimatized.


In Vitro Cellular & Developmental Biology – Plant | 2001

Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens

Krystyna Klimaszewska; Denis Lachance; Gervais Pelletier; Marie-Anne Lelu; Armand Séguin

SummaryTransgenic plants of three Picea species were produced after coculture of embryogenic tissue with the disarmed strain of Agrobacterium tumefaciens C58/pMP90/pBIV10 and selection on medium containing kanamycin. In addition to the nptII selectable gene (conferring resistance to kanamycin), the vector carried the uidA (β-glucuronidase) marker gene. Transformation frequencies were dependent on the species, genotype, and post-cocultivation procedure. Of the three species tested, P. mariana was transformed at the highest frequency, followed by P. glauca and P. abies. The transgenic state of the embryogenic tissue was initially, confirmed by histochemical β-glucuronidase (GUS) assay followed by Southern hybridization. One to over five copies of T-DNA were detected in various transgenic lines analyzed. Transgenic plants were regenerated for all species using modified protocols for maturation and germination of somatic embryos.


Journal of Experimental Botany | 2010

Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses

Frank Bedon; Claude Bomal; Sébastien Caron; Caroline Levasseur; Brian Boyle; Shawn D. Mansfield; Axel Schmidt; Jonathan Gershenzon; Jacqueline Grima-Pettenati; Armand Séguin; John MacKay

Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-represention of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitiative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution.


Molecular Plant-microbe Interactions | 2009

Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi.

Aïda Azaiez; Brian Boyle; Valérie Levée; Armand Séguin

In natural conditions, plants are subjected to a combination of biotic stresses and often have to cope with simultaneous pathogen infections. In this report, we aim to understand the global transcriptional response of hybrid poplar NM6 (Populus nigra x P. maximowiczii) to infection by two biotrophic Melampsora fungi, Melampsora larici-populina and M. medusae f. sp. deltoidae. These pathogens triggered different responses after inoculation of poplar leaves. Transcript profiling using the GeneChip Poplar Genome Array revealed a total of 416 differentially expressed transcripts whose expression level was > or = twofold relative to controls. Interestingly, approximately half of the differentially expressed genes in infected leaves showed altered expression following interaction with either of the Melampsora spp. We also infected poplar leaves simultaneously with both Melampsora spp. to investigate potential interaction between the responses to the individual pathogens during a mixed infection. For this mixed inoculation, the number of differentially expressed transcripts increased to 648 and our analysis showed that infection with both fungi also induced a common set of genes. The genes induced after Melampsora spp. infection were mainly related to primary and secondary metabolic processes, cell-wall reinforcement and lignification, defense and stress-related mechanisms, and signal perception and transduction.


Critical Reviews in Plant Sciences | 2009

Poplar and Pathogen Interactions: Insights from Populus Genome-Wide Analyses of Resistance and Defense Gene Families and Gene Expression Profiling

Sébastien Duplessis; Ian Major; Francis L. Martin; Armand Séguin

Our understanding of the molecular basis of plant-pathogen interactions is derived mostly from studies of model annual plant species, and until recently, few addressed disease resistance and defense responses in long-lived species such as trees. The release of the Populus genome sequence has permitted extensive genome-wide surveys of gene families and comparative analyses of other sequenced plant genomes. These have revealed striking features for gene families that play key roles in the plant defense response. For example, the NBS-LRR resistance ( R )-gene family is expanded compared with other plant genomes, including R -gene subfamilies not previously reported in plants. Some of these genes are clustered on the subtelomeric part of a chromosome that shows segregation distortion in genetic studies. Similar expansion is observed for other genes playing key roles in plant defense such as pathogenesis-related proteins. Among the many pathogens that infect poplar trees, Melampsora spp. fungi, which cause rust diseases in plants, are responsible for considerable damage in poplar plantations. This biotrophic pathogen has attracted recent attention and here we describe molecular insights into the Populusdefense response against rust infection. Transcript profiles derived from compatible (susceptible) and incompatible (specific host -resistance) Populus-Melampsora interactions were leveraged to describe molecular changes occurring during defense responses against rust fungi. This highlighted responses that are similar to defense responses of annual plant species, such as up-regulation of transcripts encoding pathogenesis-related proteins. The molecular evidence gathered for the poplar-rust pathosystem indicates a temporal delay in the activation of defense responses between susceptibility and partial or full resistance that is consistent with the signal conversion model described for Arabidopsis. The genome of Melampsora larici-populina, which infects several species of Populus, was recently sequenced and provides a model pathosystem for forest pathology and offers unprecedented opportunities to understand how tree species cope with disease. Ultimately, understanding the molecular basis of Populus rust resistance will greatly improve our understanding of other major diseases of poplar.

Collaboration


Dive into the Armand Séguin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Lachance

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo Germain

Université du Québec à Trois-Rivières

View shared research outputs
Researchain Logo
Decentralizing Knowledge