Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis-Philippe Hamel is active.

Publication


Featured researches published by Louis-Philippe Hamel.


The Plant Cell | 2012

Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers

Louis-Philippe Hamel; Marie-Claude Nicole; Sébastien Duplessis; Brian E. Ellis

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.


Molecular Plant-microbe Interactions | 2011

Cell Death Mediated by the N-Terminal Domains of a Unique and Highly Conserved Class of NB-LRR Protein

Sarah M. Collier; Louis-Philippe Hamel; Peter Moffett

Plant genomes encode large numbers of nucleotide-binding, leucine-rich repeat (NB-LRR) proteins, many of which are active in pathogen detection and defense response induction. NB-LRR proteins fall into two broad classes: those with a Toll and interleukin-1 receptor (TIR) domain at their N-terminus and those with a coiled-coil (CC) domain at the N-terminus. Within CC-NB-LRR-encoding genes, one basal clade is distinguished by having CC domains resembling the Arabidopsis thaliana RPW8 protein, which we refer to as CCR domains. Here, we show that CCR-NB-LRR-encoding genes are present in the genomes of all higher plants surveyed, and that they comprise two distinct subgroups: one typified by the Nicotiana benthamiana N-required gene 1 (NRG1) protein and the other typified by the Arabidopsis activated disease resistance gene 1 (ADR1) protein. We further report that, in contrast to CC-NB-LRR proteins, the CCR domains of both NRG1- and ADR1-like proteins are sufficient for the induction of defense responses, and that this activity appears to be SGT1-independent. Additionally, we report the apparent absence of both NRG1 homologs and TIR-NB-LRR-encoding genes from the dicot Aquilegia coerulea and the dicotyledonous order Lamiales as well as from monocotyledonous species. This strong correlation in occurrence is suggestive of a functional relationship between these two classes of NB-LRR proteins.


Planta | 2010

Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions

Louis-Philippe Hamel; Nathalie Beaudoin

In plants, short chitin oligosaccharides and chitosan fragments (collectively referred to as chitooligosaccharides) are well-known elicitors that trigger defense gene expression, synthesis of antimicrobial compounds, and cell wall strengthening. Recent findings have shed new light on chitin-sensing mechanisms and downstream activation of intracellular signaling networks that mediate plant defense responses. Interestingly, chitin receptors possess several lysin motif domains that are also found in several legume Nod factor receptors. Nod factors are chitin-related molecules produced by nitrogen-fixing rhizobia to induce root nodulation. The fact that chitin and Nod factor receptors share structural similarity suggests an evolutionary conserved relationship between mechanisms enabling recognition of both deleterious and beneficial microorganisms. Here, we will present an update on molecular events involved in chitooligosaccharide sensing and downstream signaling pathways in plants and will discuss how structurally related signals may lead to such contrasted outcomes during plant–microbe interactions.


Trends in Plant Science | 2014

Ancient signals: comparative genomics of green plant CDPKs

Louis-Philippe Hamel; Jen Sheen; Armand Séguin

Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.


Plant Physiology | 2011

Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome

Louis-Philippe Hamel; Meriem Benchabane; Marie-Claude Nicole; Ian T. Major; Marie-Josée Morency; Gervais Pelletier; Nathalie Beaudoin; Jen Sheen; Armand Séguin

Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.


Plant Biology | 2010

Molecular and histochemical characterisation of two distinct poplar Melampsora leaf rust pathosystems.

B. Boyle; Valérie Levée; Louis-Philippe Hamel; Marie-Claude Nicole; Armand Séguin

In this study, we compared interactions of two Melampsora foliar rust species with poplar, which resulted in either limited or abundant pathogen proliferation. In the pathosystem exhibiting limited pathogen growth, a defence response was observed after invasion of poplar leaf tissues by the biotroph, with late and clear production of reactive oxygen species (ROS) and other products. Characterisation of the histological, biochemical and transcriptional events occurring in both pathosystems showed striking similarity with components of plant defence reactions observed during qualitative resistance. Key components associated with development of an active defence response, such as up-regulation of pathogenesis-related (PR) genes, were observed during infection. Moreover, the time course and strength of gene induction appear to be critical determinants for the outcome of the tree-pathogen interaction. This work provides basic biochemical characterisation and expression data for the study of so-called partial resistance in the poplar-rust pathosystem, which is also applicable to other plant-pathogen interactions resulting in quantitative disease resistance.


Plant Physiology | 2016

The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death

Louis-Philippe Hamel; Ken-Taro Sekine; Thérèse Wallon; Yuji Sugiwaka; Kappei Kobayashi; Peter Moffett

A chloroplastic protein inhibits defense-induced cell death and is destabilized by activation of a disease resistance protein. One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins.


BMC Evolutionary Biology | 2013

Evolution and variability of Solanum RanGAP2, a cofactor in the incompatible interaction between the resistance protein GPA2 and the Globodera pallida effector Gp-RBP-1.

Jean Carpentier; Eric Grenier; Magalie Esquibet; Louis-Philippe Hamel; Peter Moffett; Maria J. Manzanares-Dauleux; Marie-Claire Kerlan

BackgroundThe Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated.ResultsWe amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants.ConclusionsOur results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.


BMC Proceedings | 2011

The genomics of poplar-rust interactions to improve tree resistance against fungal disease

Louis-Philippe Hamel; Meriem Benchabane; Ian Major; Marie-Claude Nicole; Jen Sheen; Armand Séguin

With their long life cycle, trees must have accurate mechanisms to perceive microbial invasion and elaborate signalling networks in order to activate the appropriate defense response through transcriptional reprogramming. Transcriptional activators and repressors participate in the tight regulation of the stress response, which is key to minimise the fitness costs associated with an activated response. With the availability of its whole genome sequence, ease of growth and clonal propagation, and routine transformation, poplar (Populus spp.) is considered a model tree species for genomics research and also a good system in forest pathology [1]. Moreover, genomes of a cortege of associated microorganisms are being sequenced including a tree pathogen, Melampsora poplar rust. We pursued various approaches to identify poplar genes involved in the interaction with the biotrophic Melampsora rust pathogen. Recent transcriptome analyses from our lab have shown that the expression of genes encoding several transcription factors are up-regulated during infection by Melampsora rust. Similarly we have also shown that mitogen activated protein kinases (MAPKs) are associated with poplar disease resistance against Melampsora rust [2]. New data obtained from various experimental approaches have directed our focus on two important families of transcription factors; the jasmonate ZIM-domain (JAZ) and Cys2/His2 zinc-finger protein (ZFP) families. We have identified a novel MAPK-interacting partner, PtiZFP1, which belongs to the C2H2 ZFP family of transcriptional EAR repressors.The JAZ family of transcriptional repressors were recently identified as key negative regulators of jasmonate (JA) responses.Transcript analyses show that some ZFP and JAZ members exhibit hormone-related expression profiles and up-regulation by rust infection. This up-regulation of JAZ and ZFP transcripts after rust infection strongly suggests that a hormonal response including JA is a key component of the poplar defence response against Melampsora. Late and sustained kinetics of PtiZFP1 and specificJAZ up-regulation suggest that the corresponding proteins may be required for late regulation of defense mechanisms. Several recent data have shownthat proteolytic cleavage of transcriptional repressors is a general mechanism used by plants to activate gene induction. This mechanism is now well documented for jasmonate signaling, which depends on proteasome-mediated degradation of the JAZ repressors [3,4]. In the present work, we also obtain clear evidence that MAPKs promote degradation of PtiZFP1 through the 26S proteasome.Our work suggests that PtiZFP1 and JAZs are part of Melampsora specific hormone-related responses, and by correlation as putative transcriptional repressors, participate in the regulation of the transcriptional responses downstream of these stress hormones.We hypothesize that the observed gene induction play a negative feedback loop needed to replace PtiZFP1 and JAZ proteins that were degraded following through the 26S proteasome. Newly synthesized repressor proteins could contribute to defense attenuation and therefore prevent a runaway response. Based on our data, we propose a model (Figure ​(Figure1)1) where two important families of transcription factors play a predominant role in poplar defense response to the biotrophic fungus Melampsora. The activation of poplar MAPKs would lead toPtiZFP1 degradation and as a result to transcriptional activation of defense-related genes. In parallel we also observed that several genes involved in the JA response (including JAZ) are induced following Melampsora infection. This model highlights the importance of the 26S proteasome in regulating protein pools of transcriptional repressor. For future studies we intend to uncover which cis elements and target genes are recognized by PtiZFP1 and perform functional approaches to uncover JAZ interacting proteins in poplar. Figure 1 Proposed model of PtiZFP1 function in the plant defense response. During normal conditions, direct transcriptional repressors such as PtiZFP1 inhibit the expression of stress-related genes. Following stress perception, a MAPK signaling cascade is activated leading to phosphorylation of PtiZFP1. Phosphorylation targets PtiZFP1 for degradation via the 26S proteasome (P26S), thus relieving repression of defense genes. Defense signaling in turn activates PtiZFP1 gene transcription in order to replenish normal PtiZFP1 protein levels and complete a regulatory cycle necessary to attenuate the defense response. A similar regulatory cycle exists for jasmonic acid (JA) signaling. JA biosynthesis is induced by stress which then promotes proteasome-mediated degradation of JAZ proteins. These indirect transcriptional repressors sequester the bHLH MYC2, thus inhibiting expression of defense genes under non-stressed conditions. Upon release, MYC2 ensures both positive and negative feedback loops by activating LOX3 and JAZ genes respectively. Confirmed and hypothetical pathways are presented in bold and dashed lines respectively.


Archive | 2013

Induction of Plant Defense Response and Its Impact on Productivity

Louis-Philippe Hamel; Nathalie Beaudoin

Plants encounter a wide variety of biotic agents, including bacterial pathogens that infect plant tissues and compromise plant survival. To protect themselves, plants have evolved mechanisms that specifically recognize pathogens and induce appropriate defense responses, such as the synthesis of cell wall reinforcement molecules, pathogen-degrading enzymes, and antimicrobial compounds. While expression of induced defenses is highly effective against most pathogens, it represents an energy-demanding process that can divert resources away from growth and yield. As a result, the constitutive expression of defense responses does not represent an efficient strategy to protect plants from disease, as it generally alters plant productivity and fitness. However, it is possible to potentiate plant defense responses by a first infection or selected treatment in a process known as priming. Primed plants can respond faster and more strongly to a secondary infection and will express enhanced resistance to various pathogens. As priming does not involve the constitutive expression of defense responses, this could represent a cost-effective mechanism for the induction of basal resistance against several plant pathogens.

Collaboration


Dive into the Louis-Philippe Hamel's collaboration.

Top Co-Authors

Avatar

Armand Séguin

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Ellis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Moffett

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad Barbazuk

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Daniel F. Klessig

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge