Armando Rossello
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Armando Rossello.
Molecular Cancer Research | 2007
Ombretta Rosso; Tiziana Piazza; Italia Bongarzone; Armando Rossello; Delia Mezzanzanica; Silvana Canevari; Anna Maria Orengo; Andrea Puppo; Silvano Ferrini; Marina Fabbi
Previous findings indicated that the activated leukocyte cell adhesion molecule (ALCAM) is expressed by tumors and plays a role in tumor biology. In this study, we show that ALCAM is shed from epithelial ovarian cancer (EOC) cells in vitro, leading to the generation of a soluble ALCAM (sALCAM), consisting of most of the extracellular domain. A similar sALCAM molecule was also found in the ascitic fluids and sera from EOC patients, suggesting that this process also occurs in vivo. sALCAM is constitutively produced by EOC cells, and this process can be enhanced by cell treatment with pervanadate, phorbol 12-myristate 13-acetate (PMA), or epidermal growth factor (EGF), a known growth factor for EOC. Pharmacologic inhibitors of matrix metalloproteinases (MMP) and of a disintegrin and metalloproteases (ADAM), and the tissue inhibitor of metalloproteinase-3, significantly inhibited sALCAM release by EOC cells. The ADAM17/TACE molecule was expressed in EOC cell lines and ADAM17/TACE silencing by specific small interfering RNA–reduced ALCAM shedding. In addition, inhibitors of ADAM function blocked EOC cell motility in a wound-healing assay. Conversely, a recombinant antibody blocking ALCAM adhesive functions and inducing ALCAM internalization enhanced EOC cell motility. Altogether, our data suggest that the disruption of ALCAM-mediated adhesion is a relevant step in EOC motility, and ADAM17/TACE takes part in this process, which may be relevant to EOC invasive potential. (Mol Cancer Res 2007;5(12):1246–53)
Current Pharmaceutical Design | 2007
Elisa Nuti; Tiziano Tuccinardi; Armando Rossello
More than two decades have been spent to develop many families of synthetic matrix metalloproteinases inhibitors (MMPI) as therapeutical agents for serious pathologies. Unfortunately, clinical trials conducted on broad-spectrum inhibitors have yielded disappointing results, especially in the cancer pathology area. Despite these outcomes, some small synthetic MMPI are in advanced trials or launched in clinical ones for cancer, arthritis, periodontal diseases. Today many groups are developing intensive efforts to find new classes of inhibitors characterized by improved potency and, above all, high selectivity against the specific MMP involved in each targeted pathology. The new challenges include the development of new MMPI bearing more effective ZBGs and the development of new allosteric non-zinc binding inhibitors, devoid of ZBGs. An analysis of more recent results in this field reported on journals and patents will be developed, to consider some of the more interesting new highly selective synthetic MMPI, their SARs, the new theoretical approaches used for modelling and the results of their biological evaluations.
Bioorganic & Medicinal Chemistry | 2014
Murat Bozdag; Marta Ferraroni; Elisa Nuti; Daniela Vullo; Armando Rossello; Fabrizio Carta; Andrea Scozzafava; Claudiu T. Supuran
5-(3-Tosylureido)pyridine-2-sulfonamide and 4-tosylureido-benzenesulfonamide (ts-SA) only differ by the substitution of a CH by a nitrogen atom, but they have very different inhibitory properties against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). By means of X-ray crystallography on the human CA II adducts of the two compounds these differences have been rationalized. As all sulfonamides, the two compounds bind in deprotonated form to the Zn(II) ion from the enzyme active site and their organic scaffolds extend throughout the cavity, participating in many interactions with amino acid residues and water molecules. However the pyridine derivative undergoes a tilt of the heterocyclic ring compared to the benzene analog, which leads to a very different orientation of the two scaffolds when bound to the enzyme. This tilt also leads to a clash between a carbon atom from the pyridine ring of the first inhibitor and the OH moiety of Thr200, leading to less effective inhibitory properties of the pyridine versus the benzene sulfonamide derivative. Indeed, ts-SA is a promiscuous, low nanomolar inhibitor of 7 out of 10 human (h) CA isoforms, whereas the pyridine sulfonamide is a low nanomolar inhibitor only of the tumor-associated hCA IX and XII, being less effective against other 9 isoforms. Thus, a difference of one atom (N vs CH) in two isostructural sulfonamides leads to drastic differences of activity, phenomenon understood at the atomic level through the high resolution crystallographic structure and kinetic measurements reported in the paper. Combining the tail and the ring approaches in the same chemotype leads to isoform-selective, highly effective sulfonamide CA inhibitors.
PLOS ONE | 2009
Satheesh K. Palaninathan; Nilofar N. Mohamedmohaideen; Elisabetta Orlandini; Gabriella Ortore; Susanna Nencetti; Annalina Lapucci; Armando Rossello; Joel S. Freundlich; James C. Sacchettini
Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of β-aminoxypropionic acids (compounds 5–21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR∶inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp2-hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22–32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding.
Neuroscience | 2010
P Gabelloni; E Da Pozzo; S Bendinelli; Barbara Costa; Elisa Nuti; F Casalini; Elisabetta Orlandini; F. Da Settimo; Armando Rossello; Claudia Martini
Glioblastoma multiforme is the most commonly diagnosed malignant primary brain tumour in adults. Invasive behaviour is the pathological hallmark of malignant gliomas; consequently, its inhibition has been suggested as a therapeutic strategy. Tumour cell-derived gelatinases (matrix metalloproteinase-2, matrix metalloproteinase-9) can be considered prime factors in glioma invasiveness: their expression correlates with the progression and the degree of malignancy. Thus, broad spectrum matrix metalloproteinase inhibitors (MMP inhibitors) have been included in clinical trials. In the present study, the invasiveness, viability and progression of the human glioma cell line U87MG were investigated following treatment with N-O-isopropyl sulfonamido-based hydroxamates (compounds 1 and 2) as MMP-2 inhibitors used at nanomolar concentration. A standard broad spectrum MMP-inhibitor belonging to the classical tertiary sulfonamido-based hydroxamates family (CGS_27023A) was used too. The compounds 1 and 2 resulted in potent inhibition of cell invasiveness (P<0.0001) without affecting viability. In some clinical trials, the combined therapy of temozolomide (an alkylating agent used in glioma treatment) plus marimastat (a broad spectrum MMP inhibitor) has provided evidence of the importance of MMPs to tumor progression and invasiveness. On this basis, the effect on U87MG cells of a combined treatment with temozolomide, plus each of the two MMP inhibitors at nanomolar concentration, was investigated. The obtained data demonstrated the inhibition of cell invasiveness and viability after treatment. These results can help in developing clinical combined therapy using MMP inhibitors that, at low doses, increase the anticancer efficacy of chemotherapeutic drugs, probably without causing the side effects typical of broad-spectrum MMP inhibitors.
Journal of Medicinal Chemistry | 2009
Elisa Nuti; F Casalini; Stanislava Ivanova Avramova; Salvatore Santamaria; Giovanni Cercignani; Luciana Marinelli; V. La Pietra; Ettore Novellino; Elisabetta Orlandini; Susanna Nencetti; Tiziano Tuccinardi; A Martinelli; Ngee Han Lim; Robert Visse; Hideaki Nagase; Armando Rossello
Matrix metalloproteinase-13 (MMP-13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis (OA). For this reason, MMP-13 synthetic inhibitors are being sought as potential therapeutic agents to prevent cartilage degradation and to halt the progression of OA. Herein, we report the synthesis and in vitro evaluation of a new series of selective MMP-13 inhibitors possessing an arylsulfonamidic scaffold. Among these potential inhibitors, a very promising compound was discovered exhibiting nanomolar activity for MMP-13 and was highly selective for this enzyme compared to MMP-1, -14, and TACE. This compound acted as a slow-binding inhibitor of MMP-13 and was demonstrated to be effective in an in vitro collagen assay and in a model of cartilage degradation. Furthermore, a docking study was conducted for this compound in order to investigate its binding interactions with MMP-13 and the reasons for its selectivity toward MMP-13 versus other MMPs.
Journal of Medicinal Chemistry | 2008
Sérgio M. Marques; Elisa Nuti; Armando Rossello; Claudiu T. Supuran; Tiziano Tuccinardi; Adriano Martinelli; M. Amélia Santos
Matrix metalloproteinases (MMPs) and carbonic anhydrases (CAs) are two classes of zinc enzymes with different roles and catalytic targets, such as the degradation of most of the extracellular matrix (ECM) proteins and the regulation of the CO(2)/HCO(3)(-) equilibrium in the cells, respectively. Both families have isoforms which were proved to be involved in several stages of carcinogenic processes, and so the selective inhibition of these enzymes might be of interest in cancer therapy. We report herein the design, synthesis, and in vitro evaluation of a series of compounds possessing the iminodiacetic acid as the main backbone and two functional groups attached, namely, the hydroxamic acid and the arylsulfonamide (ArSO(2)NH(2)) moieties, to enable the inhibition of MMPs and CAs, respectively. These compounds were demonstrated to strongly inhibit both MMPs and CAs, some of them from the nanomolar to subnanomolar range. Furthermore, a docking study for MMPs was reported for the most promising compound in order to investigate its binding interactions with the different MMPs.
ChemMedChem | 2011
Maria Teresa Rubino; Mariangela Agamennone; Cristina Campestre; Pietro Campiglia; Viviana Cremasco; Roberta Faccio; Antonio Laghezza; Fulvio Loiodice; Dariana Maggi; Emilia Panza; Armando Rossello; Paolo Tortorella
A number of matrix metalloproteinases (MMPs), proteins important in the balance of bone remodeling, play a critical role both in cancer metastasis and in bone matrix turnover associated with the presence of cancer cells in bone. Here, we report the synthesis and biological evaluation of a new class of MMP inhibitors characterized by a bisphosphonate function as the zinc binding group. Since the bisphosphonate group is also implicated in osteoclast inhibition and provides a preferential affinity to biological apatite, the new molecules can be regarded as bone‐seeking medicinal agents. Docking experiments were performed to clarify the mode of binding of bisphosphonate inhibitors in the active site of MMP‐2. The most promising of the studied bisphosphonates showed nanomolar inhibition against MMP‐2 and resulted in potent inhibition of osteoclastic bone resorption in vitro.
Journal of Medicinal Chemistry | 2009
Elisa Nuti; Laura Panelli; F Casalini; Stanislava Ivanova Avramova; Elisabetta Orlandini; Salvatore Santamaria; Susanna Nencetti; Tiziano Tuccinardi; Adriano Martinelli; Giovanni Cercignani; Nicola D'Amelio; Alessandro Maiocchi; Fulvio Uggeri; Armando Rossello
Overexpression of macrophage elastase (MMP-12), a member of the matrix metalloproteinases family, can be linked to tissue remodeling and degradation in some inflammatory processes, such as chronic obstructive pulmonary disease (COPD), emphysema, rheumatoid arthritis (RA), and atherosclerosis. On this basis, MMP-12 can be considered an attractive target for studying selective inhibitors that are useful in the development of new therapies for COPD and other inflammatory diseases. We report herein the design, synthesis, and in vitro evaluation of a new series of compounds, possessing an arylsulfonyl scaffold, for their potential as selective inhibitors of MMP-12. The best compound in the series showed an IC50 value of 0.2 nM, with good selectivity over MMP-1 and MMP-14. A docking study was carried out on this compound in order to investigate its binding interactions with MMP-12, and NMR studies on the complex with the MMP-12 catalytic domain were able to validate the proposed binding mode.
European Journal of Medicinal Chemistry | 2003
Aldo Balsamo; Isabella Coletta; Angelo Guglielmotti; Carla Landolfi; Francesca Mancini; Adriano Martinelli; Claudio Milanese; Filippo Minutolo; Susanna Nencetti; Elisabetta Orlandini; Mario Pinza; Simona Rapposelli; Armando Rossello
Several heteroaromatic analogues of (2-aryl-1-cyclopentenyl-1-alkylidene)-(arylmethyloxy)amine COX-2 inhibitors, in which the cyclopentene moiety was replaced by pyrazole, thiophene or isoxazole ring, were synthesized, in order to verify the influence of the different nature of the central core on the COX inhibitory properties of these kinds of molecules. Among the compounds tested, only the 3-(p-methylsulfonylphenyl) substituted thiophene derivatives 17 and 22, showed a certain COX-2 inhibitory activity, accompanied by an appreciable COX-2 versus COX-1 selectivity. Only one of the 1-(p-methylsulfonylphenyl)pyrazole compounds (16) displayed a modest inhibitory activity towards both type of isoenzymes, while the pyrazole 1-(p-aminosulfonylphenyl) substituted 12 proved to be significantly active only towards COX-1. All the isoxazole derivatives were inactive on both COX isoforms.