Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Orlandini is active.

Publication


Featured researches published by Elisabetta Orlandini.


PLOS ONE | 2009

Novel transthyretin amyloid fibril formation inhibitors: synthesis, biological evaluation, and X-ray structural analysis.

Satheesh K. Palaninathan; Nilofar N. Mohamedmohaideen; Elisabetta Orlandini; Gabriella Ortore; Susanna Nencetti; Annalina Lapucci; Armando Rossello; Joel S. Freundlich; James C. Sacchettini

Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of β-aminoxypropionic acids (compounds 5–21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR∶inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp2-hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22–32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding.


Neuroscience | 2010

Inhibition of metalloproteinases derived from tumours: new insights in the treatment of human glioblastoma

P Gabelloni; E Da Pozzo; S Bendinelli; Barbara Costa; Elisa Nuti; F Casalini; Elisabetta Orlandini; F. Da Settimo; Armando Rossello; Claudia Martini

Glioblastoma multiforme is the most commonly diagnosed malignant primary brain tumour in adults. Invasive behaviour is the pathological hallmark of malignant gliomas; consequently, its inhibition has been suggested as a therapeutic strategy. Tumour cell-derived gelatinases (matrix metalloproteinase-2, matrix metalloproteinase-9) can be considered prime factors in glioma invasiveness: their expression correlates with the progression and the degree of malignancy. Thus, broad spectrum matrix metalloproteinase inhibitors (MMP inhibitors) have been included in clinical trials. In the present study, the invasiveness, viability and progression of the human glioma cell line U87MG were investigated following treatment with N-O-isopropyl sulfonamido-based hydroxamates (compounds 1 and 2) as MMP-2 inhibitors used at nanomolar concentration. A standard broad spectrum MMP-inhibitor belonging to the classical tertiary sulfonamido-based hydroxamates family (CGS_27023A) was used too. The compounds 1 and 2 resulted in potent inhibition of cell invasiveness (P<0.0001) without affecting viability. In some clinical trials, the combined therapy of temozolomide (an alkylating agent used in glioma treatment) plus marimastat (a broad spectrum MMP inhibitor) has provided evidence of the importance of MMPs to tumor progression and invasiveness. On this basis, the effect on U87MG cells of a combined treatment with temozolomide, plus each of the two MMP inhibitors at nanomolar concentration, was investigated. The obtained data demonstrated the inhibition of cell invasiveness and viability after treatment. These results can help in developing clinical combined therapy using MMP inhibitors that, at low doses, increase the anticancer efficacy of chemotherapeutic drugs, probably without causing the side effects typical of broad-spectrum MMP inhibitors.


Journal of Medicinal Chemistry | 2009

N-O-isopropyl sulfonamido-based hydroxamates: design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for osteoarthritis.

Elisa Nuti; F Casalini; Stanislava Ivanova Avramova; Salvatore Santamaria; Giovanni Cercignani; Luciana Marinelli; V. La Pietra; Ettore Novellino; Elisabetta Orlandini; Susanna Nencetti; Tiziano Tuccinardi; A Martinelli; Ngee Han Lim; Robert Visse; Hideaki Nagase; Armando Rossello

Matrix metalloproteinase-13 (MMP-13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis (OA). For this reason, MMP-13 synthetic inhibitors are being sought as potential therapeutic agents to prevent cartilage degradation and to halt the progression of OA. Herein, we report the synthesis and in vitro evaluation of a new series of selective MMP-13 inhibitors possessing an arylsulfonamidic scaffold. Among these potential inhibitors, a very promising compound was discovered exhibiting nanomolar activity for MMP-13 and was highly selective for this enzyme compared to MMP-1, -14, and TACE. This compound acted as a slow-binding inhibitor of MMP-13 and was demonstrated to be effective in an in vitro collagen assay and in a model of cartilage degradation. Furthermore, a docking study was conducted for this compound in order to investigate its binding interactions with MMP-13 and the reasons for its selectivity toward MMP-13 versus other MMPs.


Journal of Medicinal Chemistry | 2009

Design, synthesis, biological evaluation, and NMR studies of a new series of arylsulfones as selective and potent matrix metalloproteinase-12 inhibitors.

Elisa Nuti; Laura Panelli; F Casalini; Stanislava Ivanova Avramova; Elisabetta Orlandini; Salvatore Santamaria; Susanna Nencetti; Tiziano Tuccinardi; Adriano Martinelli; Giovanni Cercignani; Nicola D'Amelio; Alessandro Maiocchi; Fulvio Uggeri; Armando Rossello

Overexpression of macrophage elastase (MMP-12), a member of the matrix metalloproteinases family, can be linked to tissue remodeling and degradation in some inflammatory processes, such as chronic obstructive pulmonary disease (COPD), emphysema, rheumatoid arthritis (RA), and atherosclerosis. On this basis, MMP-12 can be considered an attractive target for studying selective inhibitors that are useful in the development of new therapies for COPD and other inflammatory diseases. We report herein the design, synthesis, and in vitro evaluation of a new series of compounds, possessing an arylsulfonyl scaffold, for their potential as selective inhibitors of MMP-12. The best compound in the series showed an IC50 value of 0.2 nM, with good selectivity over MMP-1 and MMP-14. A docking study was carried out on this compound in order to investigate its binding interactions with MMP-12, and NMR studies on the complex with the MMP-12 catalytic domain were able to validate the proposed binding mode.


European Journal of Medicinal Chemistry | 2003

Synthesis of heteroaromatic analogues of (2-aryl-1-cyclopentenyl-1-alkylidene)-(arylmethyloxy)amine COX-2 inhibitors: effects on the inhibitory activity of the replacement of the cyclopentene central core with pyrazole, thiophene or isoxazole ring.

Aldo Balsamo; Isabella Coletta; Angelo Guglielmotti; Carla Landolfi; Francesca Mancini; Adriano Martinelli; Claudio Milanese; Filippo Minutolo; Susanna Nencetti; Elisabetta Orlandini; Mario Pinza; Simona Rapposelli; Armando Rossello

Several heteroaromatic analogues of (2-aryl-1-cyclopentenyl-1-alkylidene)-(arylmethyloxy)amine COX-2 inhibitors, in which the cyclopentene moiety was replaced by pyrazole, thiophene or isoxazole ring, were synthesized, in order to verify the influence of the different nature of the central core on the COX inhibitory properties of these kinds of molecules. Among the compounds tested, only the 3-(p-methylsulfonylphenyl) substituted thiophene derivatives 17 and 22, showed a certain COX-2 inhibitory activity, accompanied by an appreciable COX-2 versus COX-1 selectivity. Only one of the 1-(p-methylsulfonylphenyl)pyrazole compounds (16) displayed a modest inhibitory activity towards both type of isoenzymes, while the pyrazole 1-(p-aminosulfonylphenyl) substituted 12 proved to be significantly active only towards COX-1. All the isoxazole derivatives were inactive on both COX isoforms.


Farmaco | 2000

Synthesis and antiviral properties of 9-[(2-methyleneaminoxyethoxy)methyl]guanine derivatives as novel Acyclovir analogues.

Marco Macchia; Guido Antonelli; Federico Calvani; Valeria Di Bussolo; Filippo Minutolo; Elisabetta Orlandini; Ramon Tesoro; Ombretta Turriziani

This paper reports the synthesis and the antiviral properties of a series of 9-[(2-methyleneaminoxyethoxy)methyl]guanine derivatives, which can be viewed as analogues of the antiherpes drug Acyclovir (ACV) from which they differ in the replacement of its hydroxy group with variously substituted methyleneaminoxy moieties. Some of the newly synthesized compounds proved to possess a certain activity against HSV-1, albeit lower than that of ACV.


European Journal of Medicinal Chemistry | 2013

Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: Synthesis and biological evaluation

Elisa Nuti; Salvatore Santamaria; F Casalini; Kazuhiro Yamamoto; Luciana Marinelli; V. La Pietra; Ettore Novellino; Elisabetta Orlandini; Susanna Nencetti; Anna Maria Marini; Silvia Salerno; Sabrina Taliani; F. Da Settimo; H Nagase; Armando Rossello

Aggrecanases, in particular aggrecanase-2 (ADAMTS-5), are considered the principal proteases responsible for aggrecan degradation in osteoarthritis. For this reason, considerable effort has been put on the discovery and development of aggrecanase inhibitors able to slow down or halt the progression of osteoarthritis. We report herein the synthesis and biological evaluation of a series of arylsulfonamido-based hydroxamates as aggrecanase inhibitors. Compound 18 was found to have a nanomolar activity for ADAMTS-5, ADAMTS-4 and MMP-13 and high selectivity over MMP-1 and MMP-14. Furthermore, this compound proved to be effective in blocking ex vivo cartilage degradation without having effect on cell cytotoxicity.


Journal of Medicinal Chemistry | 2014

Structural insights on carbonic anhydrase inhibitory action, isoform selectivity, and potency of sulfonamides and coumarins incorporating arylsulfonylureido groups.

Murat Bozdag; Marta Ferraroni; Fabrizio Carta; Daniela Vullo; Laura Lucarini; Elisabetta Orlandini; Armando Rossello; Elisa Nuti; Andrea Scozzafava; Emanuela Masini; Claudiu T. Supuran

Sulfonamides and coumarins incorporating arylsulfonylureido tails were prepared and assayed as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Some derivatives incorporating 3-pyridinesulfonamide and arylsulfonylureoido fragments were low nanomolar inhibitors of isoforms CA II and XII (upregulated or overexpressed in glaucoma) and showed effective in vivo intraocular pressure lowering effects in an animal model of the disease, which were several times better compared to those of the antiglaucoma drug dorzolamide. By means of X-ray crystallography of adducts of several sulfonamides with CA II, the effective inhibitory properties were rationalized at the molecular level. The coumarins were ineffective as hCA I and II inhibitors but showed low nanomolar activity for the inhibition of the tumor-associated isoforms hCA IX and XII. The presence of arylsulfonylureido tails in these CA inhibitors possessing quite different mechanisms of action led to highly effective and isoform-selective compounds targeting enzymes involved in severe pathologies such as glaucoma or cancer.


Journal of Medicinal Chemistry | 2015

N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity.

Elisa Nuti; Cristina Gallo; Antonino Bruno; Barbara Bassani; Caterina Camodeca; Tiziano Tuccinardi; Laura Vera; Elisabetta Orlandini; Susanna Nencetti; Enrico A. Stura; Adriano Martinelli; Vincent Dive; Adriana Albini; Armando Rossello

Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.


European Journal of Medicinal Chemistry | 1990

Synthesis and antimicrobial properties of substituted 3-aminoxy-(E)-2-methoxyiminopropionyl penicillins and cephalosporins☆

Aldo Balsamo; B. Macchia; Adriano Martinelli; Elisabetta Orlandini; Armando Rossello; Franco Macchia; G Brocalli; Paolo Domiano

Abstract The 3-aminoxy-( E )-2-methoxyiminopropionyl penicillins 13 and cephalosporins 14 and 15 were synthesized and assayed for their antimicrobial activity on Gram-positive and Gram-negative bacteria whether producers of β-lactamases or otherwise. Compounds 13 , 14 , and 15 exhibited an activity which was generally lower than that of the corresponding phenylacetyl derivative: penicillin G ( 4 ), cephaloram ( 5 ), and phenylacetamidodesacetoxycephalosporanic acid ( 6 ). Furthermore, the comparison of the minimum inhibitory concentration values of some of the new 2-methoxyimino 3-aminoxypropionyl derivatives 13–15 with those of the corresponding ones 1–3 lacking the 2-methoxyimino substituent showed that the introduction of the 2-methoxyimino group of E configuration on the aminoxypropionamido side chain of 1–3 gives compounds ( 13–15 ) which do not generally possess better antimicrobial properties.

Collaboration


Dive into the Elisabetta Orlandini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge