Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armelle Darrasse is active.

Publication


Featured researches published by Armelle Darrasse.


BMC Genomics | 2009

The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae

Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrère; Ralf Koebnik; Stéphane Cociancich; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Véronique Verdier; Mathieu Arlat; Philippe Rott

BackgroundThe Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences.ResultsThe complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens.ConclusionThe two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.


Applied and Environmental Microbiology | 2005

Xanthomonas axonopodis pv. phaseoli var. fuscans Is Aggregated in Stable Biofilm Population Sizes in the Phyllosphere of Field-Grown Beans

Marie-Agnès Jacques; K. Josi; Armelle Darrasse; R. Samson

ABSTRACT The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.


Applied and Environmental Microbiology | 2008

The Type III Secretion System of Xanthomonas fuscans subsp. fuscans Is Involved in the Phyllosphere Colonization Process and in Transmission to Seeds of Susceptible Beans

A. Darsonval; Armelle Darrasse; Damien F. Meyer; M. Demarty; Karine Durand; Charlotte Bureau; Charles Manceau; Marie Agnès Jacques

ABSTRACT Understanding the survival, multiplication, and transmission to seeds of plant pathogenic bacteria is central to study their pathogenesis. We hypothesized that the type III secretion system (T3SS), encoded by hrp genes, could have a role in host colonization by plant pathogenic bacteria. The seed-borne pathogen Xanthomonas fuscans subsp. fuscans causes common bacterial blight of bean (Phaseolus vulgaris). Directed mutagenesis in strain CFBP4834-R of X. fuscans subsp. fuscans and bacterial population density monitoring on bean leaves showed that strains with mutations in the hrp regulatory genes, hrpG and hrpX, were impaired in their phyllospheric growth, as in the null interaction with Escherichia coli C600 and bean. In the compatible interaction, CFBP4834-R reached high phyllospheric population densities and was transmitted to seeds at high frequencies with high densities. Strains with mutations in structural hrp genes maintained the same constant epiphytic population densities (1 × 105 CFU g−1 of fresh weight) as in the incompatible interaction with Xanthomonas campestris pv. campestris ATCC 33913 and the bean. Low frequencies of transmission to seeds and low bacterial concentrations were recorded for CFBP4834-R hrp mutants and for ATCC 33913, whereas E. coli C600 was not transmitted. Moreover, unlike the wild-type strain, strains with mutations in hrp genes were not transmitted to seeds by vascular pathway. Transmission to seeds by floral structures remained possible for both. This study revealed the involvement of the X. fuscans subsp. fuscans T3SS in phyllospheric multiplication and systemic colonization of bean, leading to transmission to seeds. Our findings suggest a major contribution of hrp regulatory genes in host colonization processes.


Applied and Environmental Microbiology | 2010

Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence.

Armelle Darrasse; Arnaud Darsonval; Tristan Boureau; Marie-Noëlle Brisset; Karine Durand; Marie-Agnès Jacques

ABSTRACT An understanding of the mechanisms involved in the different steps of bacterial disease epidemiology is essential to develop new control strategies. Seeds are the passive carriers of a diversified microbial cohort likely to affect seedling physiology. Among seed-borne plant-pathogenic bacteria, seed carriage in compatible situations is well evidenced. The aims of our work are to determine the efficiency of pathogen transmission to seeds of a nonhost plant and to evaluate bacterial and plant behaviors at emergence. Bacterial transmission from flowers to seeds and from seeds to seedlings was measured for Xanthomonas campestris pv. campestris in incompatible interactions with bean. Transmissions from seeds to seedlings were compared for X. campestris pv. campestris, for Xanthomonas citri pv. phaseoli var. fuscans in compatible interactions with bean, and for Escherichia coli, a human pathogen, in null interactions with bean. The induction of defense responses was monitored by using reverse transcription and quantitative PCR (RT-qPCR) of genes representing the main signaling pathways and assaying defense-related enzymatic activities. Flower inoculations resulted in a high level of bean seed contamination by X. campestris pv. campestris, which transmitted efficiently to seedlings. Whatever the type of interaction tested, dynamics of bacterial population sizes were similar on seedlings, and no defense responses were induced evidencing bacterial colonization of seedlings without any associated defense response induction. Bacteria associated with the spermosphere multiply in this rich environment, suggesting that the colonization of seedlings relies mostly on commensalism. The transmission of plant-pathogenic bacteria to and by nonhost seeds suggests a probable role of seeds of nonhost plants as an inoculum source.


BMC Evolutionary Biology | 2011

Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads

Nadia Mhedbi-Hajri; Armelle Darrasse; Sandrine Pigné; Karine Durand; Stéphanie Fouteau; Valérie Barbe; Charles Manceau; Christophe Lemaire; Marie-Agnès Jacques

BackgroundBacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.ResultsWe established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of Xanthomonas spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes.ConclusionsThese data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.


BMC Genomics | 2013

Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads

Armelle Darrasse; Sébastien Carrère; Valérie Barbe; Tristan Boureau; Mario L Arrieta-Ortiz; Sophie Bonneau; Martial Briand; Chrystelle Brin; Stéphane Cociancich; Karine Durand; Stéphanie Fouteau; Lionel Gagnevin; Fabien Guérin; Endrick Guy; Arnaud Indiana; Ralf Koebnik; Emmanuelle Lauber; Alejandra Munoz; Laurent D. Noël; Isabelle Pieretti; Stéphane Poussier; Olivier Pruvost; Isabelle Robène-Soustrade; Philippe Rott; Monique Royer; Laurana Serres-Giardi; Boris Szurek; Marie-Anne Van Sluys; Valérie Verdier; Christian Vernière

BackgroundXanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences.ResultsComparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations.ConclusionsThis work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


PLOS ONE | 2013

Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

Nadia Mhedbi-Hajri; Ahmed Hajri; Tristan Boureau; Armelle Darrasse; Karine Durand; Chrystelle Brin; Marion Fischer-Le Saux; Charles Manceau; Stéphane Poussier; Olivier Pruvost; Christophe Lemaire; Marie-Agnès Jacques

Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.


New Phytologist | 2013

The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts.

Guillaume Déjean; Servane Blanvillain-Baufumé; Alice Boulanger; Armelle Darrasse; Thomas Dugé de Bernonville; Anne-Laure Girard; Sébastien Carrère; Stevie Jamet; Claudine Zischek; Martine Lautier; Magali Solé; Daniela Büttner; Marie-Agnès Jacques; Emmanuelle Lauber; Matthieu Arlat

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Annual Review of Phytopathology | 2016

Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas†

Marie-Agnès Jacques; Matthieu Arlat; Alice Boulanger; Tristan Boureau; Sébastien Carrère; Sophie Cesbron; Nicolas W.G. Chen; Stéphane Cociancich; Armelle Darrasse; Nicolas Denancé; Marion Fischer-Le Saux; Lionel Gagnevin; Ralf Koebnik; Emmanuelle Lauber; Laurent D. Noël; Isabelle Pieretti; Perrine Portier; Olivier Pruvost; Adrien Rieux; Isabelle Robène; Monique Royer; Boris Szurek; Valérie Verdier; Christian Vernière

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


BMC Genomics | 2012

Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels.

Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrère; Ralf Koebnik; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie-Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Valérie Verdier; Matthieu Arlat; Dean W. Gabriel; Philippe Rott; Stéphane Cociancich

BackgroundXanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity.ResultsComparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems.ConclusionsThis study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.

Collaboration


Dive into the Armelle Darrasse's collaboration.

Top Co-Authors

Avatar

Marie-Agnès Jacques

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Carrère

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Gagnevin

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Marie Agnès Jacques

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge