Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf Koebnik is active.

Publication


Featured researches published by Ralf Koebnik.


Journal of Bacteriology | 2005

Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence

Frank Thieme; Ralf Koebnik; Thomas Bekel; Carolin Berger; Jens Boch; Daniela Büttner; Camila Caldana; Lars Gaigalat; Alexander Goesmann; Sabine Kay; Oliver Kirchner; Christa Lanz; Burkhard Linke; Alice C. McHardy; Folker Meyer; Gerhard Mittenhuber; Dietrich H. Nies; Ulla Niesbach-Klösgen; Thomas Patschkowski; Christian Rückert; Oliver Rupp; Susanne Schneiker; Stephan C. Schuster; Frank-Jörg Vorhölter; Ernst Weber; Alfred Pühler; Ulla Bonas; Daniela Bartels; Olaf Kaiser

The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.


BMC Genomics | 2008

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

Daniel D. Sommer; Michael C. Schatz; Adam M. Phillippy; Pablo D. Rabinowicz; Seiji Tsuge; Ayako Furutani; Hirokazu Ochiai; Arthur L. Delcher; David R. Kelley; Ramana Madupu; Daniela Puiu; Diana Radune; Martin Shumway; Cole Trapnell; Gudlur Aparna; Gopaljee Jha; Alok K. Pandey; Prabhu B. Patil; Hiromichi Ishihara; Damien Meyer; Boris Szurek; Valérie Verdier; Ralf Koebnik; J. Maxwell Dow; Robert P. Ryan; Hisae Hirata; Shinji Tsuyumu; Sang Won Lee; Pamela C. Ronald; Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Molecular Plant Pathology | 2009

The type III effectors of Xanthomonas

Frank F. White; Neha Potnis; Jeffrey B. Jones; Ralf Koebnik

A review of type III effectors (T3 effectors) from strains of Xanthomonas reveals a growing list of candidate and known effectors based on functional assays and sequence and structural similarity searches of genomic data. We propose that the effectors and suspected effectors should be distributed into 39 so-called Xop groups reflecting sequence similarity. Some groups have structural motifs for putative enzymatic functions, and recent studies have provided considerable insight into the interaction with host factors in their function as mediators of virulence and elicitors of resistance for a few specific T3 effectors. Many groups are related to T3 effectors of plant and animal pathogenic bacteria, and several groups appear to have been exploited primarily by Xanthomonas species based on available data. At the same time, a relatively large number of candidate effectors remain to be examined in more detail with regard to their function within host cells.


Journal of Bacteriology | 2011

Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp.

Adam J. Bogdanove; Ralf Koebnik; Hong Lu; Ayako Furutani; Samuel V. Angiuoli; Prabhu B. Patil; Marie-Anne Van Sluys; Robert P. Ryan; Damien Meyer; Sang-Wook Han; Gudlur Aparna; Misha Rajaram; Arthur L. Delcher; Adam M. Phillippy; Daniela Puiu; Michael C. Schatz; Martin Shumway; Daniel D. Sommer; Cole Trapnell; Faiza Benahmed; George Dimitrov; Ramana Madupu; Diana Radune; Steven A. Sullivan; Gopaljee Jha; Hiromichi Ishihara; Sang Won Lee; Alok K. Pandey; Vikas Sharma; Malinee Sriariyanun

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Journal of Bacteriology | 2006

Specific Binding of the Xanthomonas campestris pv. vesicatoria AraC-Type Transcriptional Activator HrpX to Plant-Inducible Promoter Boxes

Ralf Koebnik; Antje Krüger; Frank Thieme; Alexander Urban; Ulla Bonas

The pathogenicity of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Expression of the hrp operons is strongly induced in planta and in a special minimal medium and depends on two regulatory proteins, HrpG and HrpX. In this study, DNA affinity enrichment was used to demonstrate that the AraC-type transcriptional activator HrpX binds to a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGC-N(15)-TTCGC), present in the promoter regions of four hrp operons. No binding of HrpX was observed when DNA fragments lacking a PIP box were used. HrpX also bound to a DNA fragment containing an imperfect PIP box (TTCGC-N(8)-TTCGT). Dinucleotide replacements in each half-site of the PIP box strongly decreased binding of HrpX, while simultaneous dinucleotide replacements in both half-sites completely abolished binding. Based on the complete genome sequence of Xanthomonas campestris pv. vesicatoria, putative plant-inducible promoters consisting of a PIP box and a -10 promoter motif were identified in the promoter regions of almost all HrpX-activated genes. Bioinformatic analyses and reverse transcription-PCR experiments revealed novel HrpX-dependent genes, among them a NUDIX hydrolase gene and several genes with a predicted role in the degradation of the plant cell wall. We conclude that HrpX is the most downstream component of the hrp regulatory cascade, which is proposed to directly activate most genes of the hrpX regulon via binding to corresponding PIP boxes.


New Phytologist | 2013

Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae

Jana Streubel; Céline Pesce; Mathilde Hutin; Ralf Koebnik; Jens Boch; Boris Szurek

Bacterial plant-pathogenic Xanthomonas strains translocate transcription activator-like (TAL) effectors into plant cells to function as specific transcription factors. Only a few plant target genes of TAL effectors have been identified, so far. Three plant SWEET genes encoding putative sugar transporters are known to be induced by TAL effectors from rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo). We predict and validate that expression of OsSWEET14 is induced by a novel TAL effector, Tal5, from an African Xoo strain. Artificial TAL effectors (ArtTALs) were constructed to individually target 20 SWEET orthologs in rice. They were used as designer virulence factors to study which rice SWEET genes can support Xoo virulence. The Tal5 target box differs from those of the already known TAL effectors TalC, AvrXa7 and PthXo3, which also induce expression of OsSWEET14, suggesting evolutionary convergence on key targets. ArtTALs efficiently complemented an Xoo talC mutant, demonstrating that specific induction of OsSWEET14 is the key target of TalC. ArtTALs that specifically target individual members of the rice SWEET family revealed three known and two novel SWEET genes to support bacterial virulence. Our results demonstrate that five phylogenetically close SWEET proteins, which presumably act as sucrose transporters, can support Xoo virulence.


BMC Genomics | 2009

The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae

Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrère; Ralf Koebnik; Stéphane Cociancich; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Véronique Verdier; Mathieu Arlat; Philippe Rott

BackgroundThe Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences.ResultsThe complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens.ConclusionThe two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.


BMC Genomics | 2011

Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

Neha Potnis; Ksenia V. Krasileva; Virginia Chow; Nalvo F. Almeida; Prabhu B. Patil; Robert P. Ryan; Molly Sharlach; Franklin Behlau; J Max Dow; M. T. Momol; Frank F. White; James F. Preston; Boris A. Vinatzer; Ralf Koebnik; João C. Setubal; David J. Norman; Brian J. Staskawicz; Jeffrey B. Jones

BackgroundBacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.ResultsWe sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.ConclusionsComparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.


BMC Genomics | 2008

The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

Roy Gross; Carlos A. Guzmán; Mohammed Sebaihia; Vitor A. P. Martins dos Santos; Dietmar H. Pieper; Ralf Koebnik; Melanie Lechner; Daniela Bartels; Jens Buhrmester; Jomuna V. Choudhuri; Thomas Ebensen; Lars Gaigalat; Stefanie Herrmann; Amit N. Khachane; Christof Larisch; Stefanie Link; Burkhard Linke; Folker Meyer; Sascha Mormann; Diana Nakunst; Christian Rückert; Susanne Schneiker-Bekel; Kai Schulze; Frank-Jörg Vorhölter; Tetyana Yevsa; Jacquelyn T. Engle; William E. Goldman; Alfred Pühler; Ulf B. Göbel; Alexander Goesmann

BackgroundBordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described.ResultsIn this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae.ConclusionThe genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.


Plant Journal | 2015

A knowledge‐based molecular screen uncovers a broad‐spectrum OsSWEET14 resistance allele to bacterial blight from wild rice

Mathilde Hutin; François Sabot; Alain Ghesquière; Ralf Koebnik; Boris Szurek

Transcription activator-like (TAL) effectors are type III-delivered transcription factors that enhance the virulence of plant pathogenic Xanthomonas species through the activation of host susceptibility (S) genes. TAL effectors recognize their DNA target(s) via a partially degenerate code, whereby modular repeats in the TAL effector bind to nucleotide sequences in the host promoter. Although this knowledge has greatly facilitated our power to identify new S genes, it can also be easily used to screen plant genomes for variations in TAL effector target sequences and to predict for loss-of-function gene candidates in silico. In a proof-of-principle experiment, we screened a germplasm of 169 rice accessions for polymorphism in the promoter of the major bacterial blight susceptibility S gene OsSWEET14, which encodes a sugar transporter targeted by numerous strains of Xanthomonas oryzae pv. oryzae. We identified a single allele with a deletion of 18xa0bp overlapping with the binding sites targeted by several TAL effectors known to activate the gene. We show that this allele, which we call xa41(t), confers resistance against half of the tested Xoo strains, representative of various geographic origins and genetic lineages, highlighting the selective pressure on the pathogen to accommodate OsSWEET14 polymorphism, and reciprocally the apparent limited possibilities for the host to create variability at this particular S gene. Analysis of xa41(t) conservation across the Oryza genus enabled us to hypothesize scenarios as to its evolutionary history, prior to and during domestication. Our findings demonstrate that resistance through TAL effector-dependent loss of S-gene expression can be greatly fostered upon knowledge-based molecular screening of a large collection of host plants.

Collaboration


Dive into the Ralf Koebnik's collaboration.

Top Co-Authors

Avatar

Boris Szurek

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Lionel Gagnevin

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Sébastien Carrère

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent D. Noël

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Agnès Jacques

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Bolot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Valérie Verdier

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Arlat

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge