Armelle Yart
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Armelle Yart.
Biochimica et Biophysica Acta | 2002
Armelle Yart; Hugues Chap; Patrick Raynal
Recent reports have shown that phosphoinositide 3-kinases (PI3Ks) mediate various biological activities of lysophosphatidic acid (LPA), including cell proliferation or survival. In addition, these enzymes have been proposed to be early intermediates of mitogen-activated protein kinase (MAPK) activation. Here we summarize our current knowledge of the mechanisms underlying these observations. p110gamma is an isoform of PI3K that can be activated in vitro by Gbetagamma subunits and was therefore considered as the logical candidate to mediate responses induced by G protein-coupled receptor (GPCR) agonists. In agreement with this, p110gamma has been involved in different biochemical models linking Gbetagamma to MAPK activation. Nevertheless, its apparent tissue-specific distribution has raised questions regarding the physiological relevance of these models. In addition, LPA can activate p110beta, a member of the phosphotyrosine-dependent PI3K subfamily that participates in the mitogenic effect of LPA. Its activation is thought to involve a synergistic effect of Gbetagamma and phosphotyrosine motifs provided by a transactivated EGF receptor/Gab1 pathway. We are currently studying a possible role of p110beta upstream from Ras, suggesting that this protein could provide a novel connection between betagamma and the MAPK pathway.
Molecular and Cellular Biology | 2010
Thomas Edouard; Jean-Philippe Combier; Audrey Nédélec; Sophie Bel-Vialar; Mélanie Métrich; Francoise Conte-Auriol; Stanislas Lyonnet; Béatrice Parfait; Maithé Tauber; Jean-Pierre Salles; Frank Lezoualc'h; Armelle Yart; Patrick Raynal
ABSTRACT LEOPARD syndrome (LS), a disorder with multiple developmental abnormalities, is mainly due to mutations that impair the activity of the tyrosine phosphatase SHP2 (PTPN11). How these alterations cause the disease remains unknown. We report here that fibroblasts isolated from LS patients displayed stronger epidermal growth factor (EGF)-induced phosphorylation of both AKT and glycogen synthase kinase 3β (GSK-3β) than fibroblasts from control patients. Similar results were obtained in HEK293 cells expressing LS mutants of SHP2. We found that the GAB1/phosphoinositide 3-kinase (PI3K) complex was more abundant in fibroblasts from LS than control subjects and that both AKT and GSK-3β hyperphosphorylation were prevented by reducing GAB1 expression or by overexpressing a GAB1 mutant unable to bind to PI3K. Consistently, purified recombinant LS mutants failed to dephosphorylate GAB1 PI3K-binding sites. These mutants induced PI3K-dependent increase in cell size in a model of chicken embryo cardiac explants and in transcriptional activity of the atrial natriuretic factor (ANF) gene in neonate rat cardiomyocytes. In conclusion, SHP2 mutations causing LS facilitate EGF-induced PI3K/AKT/GSK-3β stimulation through impaired GAB1 dephosphorylation, resulting in deregulation of a novel signaling pathway that could be involved in LS pathology.
Journal of Biological Chemistry | 2006
Marie Dance; Alexandra Montagner; Armelle Yart; Bernard Masri; Yves Audigier; Bertrand Perret; Jean-Pierre Salles; Patrick Raynal
Phosphoinositide 3-kinase (PI3K) mediates essential functions of vascular endothelial growth factor (VEGF), including the stimulation of endothelial cell proliferation and migration. Nevertheless, the mechanisms coupling the receptor VEGFR-2 to PI3K remain obscure. We observed that the Grb2-bound adapter Gab1 is tyrosine-phosphorylated and relocated to membrane fractions upon VEGF stimulation of endothelial cells. We could detect the PI3K regulatory subunit p85 in immunoprecipitates of endogenous Gab1, and vice versa, and measure a Gab1-associated lipid kinase activity upon VEGF stimulation. Furthermore, transfection of the Gab1-YF3 mutant lacking all p85-binding sites strongly repressed PI3K activation measured in vitro. Moreover, Gab1-YF3 severely decreased the cellular amount of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generated in response to VEGF. Furthermore, adenoviral expression of Gab1-YF3 suppressed both Akt phosphorylation and recovery of wounded human umbilical vein endothelial cell monolayers, a VEGF-dependent process involving cell migration and proliferation under PI3K control. Transfection of other Gab1 mutants, lacking Grb2-binding sites or the pleckstrin homology (PH) domain, also prevented Akt activation, further demonstrating Gab1 involvement in PI3K activation. These mutants were also used to show that interactions with both Grb2 and PtdIns(3,4,5)P3 mediate Gab1 recruitment by VEGFR-2. Importantly, Gab1 mobilization was impaired by (i) PI3K inhibitors, (ii) deletion of Gab1 PH domain, (iii) PTEN (phosphatase and tensin homolog deleted on chromosome 10) overexpression to repress PtdIns(3,4,5)P3 production, and (iv) overexpression of a competitor PH domain for PtdIns(3,4,5)P3 binding, which altogether demonstrated that PI3K is also an upstream regulator of Gab1. Gab1 thus appears as a primary actor in coupling VEGFR-2 to PI3K/Akt, recruited through an amplification loop involving PtdIns(3,4,5)P3 and its PH domain.
FEBS Letters | 2003
Christine Peres; Armelle Yart; Bertrand Perret; Jean-Pierre Salles; Patrick Raynal
Methyl‐β‐cyclodextrin (MβCD) was used to explore a role for cholesterol‐enriched plasma membrane microdomains in coupling lysophosphatidic acid (LPA) stimulation to phosphoinositide 3‐kinase (PI3K) activation. Cholesterol depletion strongly inhibited the production of phosphatidylinositol 3,4‐bisphosphate and phosphatidylinositol 3,4,5‐trisphosphate in Vero cells stimulated with LPA. In agreement, the phosphorylation of Akt/protein kinase B, but not of Erk kinases, was suppressed by MβCD. MβCD did not interfere with the overall phospholipid metabolism, and its effects were reversed in cholesterol add‐back experiments. Finally, PI3K was detected in lipid rafts prepared from control but not MβCD‐treated cells, suggesting that these microdomains contribute to LPA signalling by compartmentalising component(s) of the PI3K pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Audrey De Rocca Serra-Nédélec; Thomas Edouard; Karine Tréguer; Mylène Tajan; Toshiyuki Araki; Marie Dance; Marianne Mus; Alexandra Montagner; Maïté Tauber; Jean-Pierre Salles; Philippe Valet; Benjamin G. Neel; Patrick Raynal; Armelle Yart
Noonan syndrome (NS), a genetic disease caused in half of cases by activating mutations of the tyrosine phosphatase SHP2 (PTPN11), is characterized by congenital cardiopathies, facial dysmorphic features, and short stature. How mutated SHP2 induces growth retardation remains poorly understood. We report here that early postnatal growth delay is associated with low levels of insulin-like growth factor 1 (IGF-1) in a mouse model of NS expressing the D61G mutant of SHP2. Conversely, inhibition of SHP2 expression in growth hormone (GH)-responsive cell lines results in increased IGF-1 release upon GH stimulation. SHP2-deficient cells display decreased ERK1/2 phosphorylation and rat sarcoma (RAS) activation in response to GH, whereas expression of NS-associated SHP2 mutants results in ERK1/2 hyperactivation in vitro and in vivo. RAS/ERK1/2 inhibition in SHP2-deficient cells correlates with impaired dephosphorylation of the adaptor Grb2-associated binder-1 (GAB1) on its RAS GTPase-activating protein (RASGAP) binding sites and is rescued by interfering with RASGAP recruitment or function. We demonstrate that inhibition of ERK1/2 activation results in an increase of IGF-1 levels in vitro and in vivo, which is associated with significant growth improvement in NS mice. In conclusion, NS-causing SHP2 mutants inhibit GH-induced IGF-1 release through RAS/ERK1/2 hyperactivation, a mechanism that could contribute to growth retardation. This finding suggests that, in addition to its previously shown beneficial effect on NS-linked cardiac and craniofacial defects, RAS/ERK1/2 modulation could also alleviate the short stature phenotype in NS caused by PTPN11 mutations.
Molecular and Cellular Biology | 2008
Carla Sampaio; Marie Dance; Alexandra Montagner; Thomas Edouard; Nicole Malet; Bertrand Perret; Armelle Yart; Jean-Pierre Salles; Patrick Raynal
ABSTRACT Phosphoinositide 3-kinase (PI3K) participates in extracellular signal-regulated kinase 1 and 2 (ERK1-2) activation according to signal strength, through unknown mechanisms. We report herein that Gab1/Shp2 constitutes a PI3K-dependent checkpoint of ERK1-2 activation regulated according to signal intensity. Indeed, by up- and down-regulation of signal strength in different cell lines and through different methods, we observed that Gab1/Shp2 and Ras/ERK1-2 in concert become independent of PI3K upon strong epidermal growth factor receptor (EGFR) stimulation and dependent on PI3K upon limited EGFR activation. Using Gab1 mutants, we observed that this conditional role of PI3K is dictated by the EGFR capability of recruiting Gab1 through Grb2 or through the PI3K lipid product PIP3, according to a high or weak level of receptor stimulation, respectively. In agreement, Grb2 siRNA generates, in cells with maximal EGFR stimulation, a strong dependence on PI3K for both Gab1/Shp2 and ERK1-2 activation. Therefore, Ras/ERK1-2 depends on PI3K only when PIP3 is required to recruit Gab1/Shp2, which occurs only under weak EGFR mobilization. Finally, we show that, in glioblastoma cells displaying residual EGFR activation, this compensatory mechanism becomes necessary to efficiently activate ERK1-2, which could probably contribute to tumor resistance to EGFR inhibitors.
Cellular and Molecular Life Sciences | 2007
T. Edouard; Alexandra Montagner; M. Dance; F. Conte; Armelle Yart; B. Parfait; Maithe Tauber; Jean-Pierre Salles; Patrick Raynal
Abstract.Activating and inactivating mutations of SHP-2 are responsible, respectively, for the Noonan (NS) and the LEOPARD (LS) syndromes. Clinically, these developmental disorders overlap greatly, resulting in the apparent paradox of similar diseases caused by mutations that oppositely influence SHP-2 phosphatase activity. While the mechanisms remain unclear, recent functional analysis of SHP-2, along with the identification of other genes involved in NS and in other related syndromes (neurofibromatosis-1, Costello and cardio-facio-cutaneous syndromes), strongly suggest that Ras/MAPK represents the major signaling pathway deregulated by SHP-2 mutants. We discuss the idea that, with the exception of LS mutations that have been shown to exert a dominant negative effect, all disease-causing mutations involved in Ras/MAPK-mediated signaling, including SHP-2, might lead to enhanced MAPK activation. This suggests that a narrow range of MAPK signaling is required for appropriate development. We also discuss the possibility that LS mutations may not simply exhibit dominant negative activity.
European Journal of Medical Genetics | 2015
Mylène Tajan; Audrey de Rocca Serra; Philippe Valet; Thomas Edouard; Armelle Yart
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2s structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Current Cancer Drug Targets | 2003
Armelle Yart; Patrick Mayeux; Patrick Raynal
Ras proteins function as molecular switches that cycle between an inactive GDP-bound state, and an active GTP-bound form that triggers different signaling pathways. Because Ras can integrate both proliferative and anti-apoptotic stimuli, GTP-locked Ras mutants play a critical role in the development of human tumors. Moreover, wild-type Ras relays the transforming potential of a number of molecules involved in tumor development, including protein tyrosine kinases. Consequently, the molecular intermediates that control Ras activation are potential targets of anti-tumoral pharmacology. Besides the canonical Shc/Grb2/Sos module classically involved in Ras activation, novel effectors have recently been shown to participate in this pathway, including the multivalent Grb2-associated docking protein Gab1, the protein tyrosine phosphatase SHP-2, and the phosphoinositide 3-kinase. Recent genetic advances have shown that these proteins are critically involved in cell proliferation and survival, further suggesting that they could be interesting targets for selective tumor therapy. Here we review recent progress in our understanding of the role of Gab1 and its partners in Ras activation, and other survival/proliferation pathways. Implications for the pharmacological manipulation of this pathway in the treatment of cancer will also be discussed.
Archives De Pediatrie | 2008
T. Edouard; Patrick Raynal; Armelle Yart; F. Conte-Auriol; Jean-Pierre Salles; M. Tauber
Growth hormone (GH), secreted by the anterior pituitary into the circulation, binds to membrane receptors in target tissues to stimulate body growth; most of its effects is mediated by the insulin-like growth factor 1 (IGF-1). In addition to promoting growth, GH has important metabolic actions. The syndrome of GH insensitivity (GHI) was first identified in 1966 by Laron et al. in three children with clinical phenotype characteristic of growth hormone deficiency but associated with elevated serum concentration of GH. Direct evidence of a GH receptor (GHR) abnormality was provided in 1989. More recently, molecular abnormalities in the postreceptor signalling mechanism were found. Mutations of signal transducer and activator of transcription 5b (Stat5b) were reported in patients with growth retardation and primary immunodeficiency. Mutations of the tyrosin phosphatase Shp2 were identified in patients affected by Noonan syndrome characterized by short stature, cardiopathy and increased risk of leukaemia. The unmasking of the molecular bases for these defects will contribute greatly to our future understanding of both normal and aberrant growth. Moreover, this knowledge should bring insight on cancerogenesis or immunodeficiency caused by cytokines resistance.