Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armin Hansel is active.

Publication


Featured researches published by Armin Hansel.


Applied and Environmental Microbiology | 2008

On-Line Monitoring of Microbial Volatile Metabolites by Proton Transfer Reaction-Mass Spectrometry

Michael Bunge; Nooshin Araghipour; Tomas Mikoviny; Jürgen Dunkl; R. Schnitzhofer; Armin Hansel; Franz Schinner; Armin Wisthaler; Rosa Margesin; T.D. Märk

ABSTRACT A method for analysis of volatile organic compounds (VOCs) from microbial cultures was established using proton transfer reaction-mass spectrometry (PTR-MS). A newly developed sampling system was coupled to a PTR-MS instrument to allow on-line monitoring of VOCs in the dynamic headspaces of microbial cultures. The novel PTR-MS method was evaluated for four reference organisms: Escherichia coli, Shigella flexneri, Salmonella enterica, and Candida tropicalis. Headspace VOCs in sampling bottles containing actively growing cultures and uninoculated culture medium controls were sequentially analyzed by PTR-MS. Characteristic marker ions were found for certain microbial cultures: C. tropicalis could be identified by several unique markers compared with the other three organisms, and E. coli and S. enterica were distinguishable from each other and from S. flexneri by specific marker ions, demonstrating the potential of this method to differentiate between even closely related microorganisms. Although the temporal profiles of some VOCs were similar to the growth dynamics of the microbial cultures, most VOCs showed a different temporal profile, characterized by constant or decreasing VOC levels or by single or multiple peaks over 24 h of incubation. These findings strongly indicate that the temporal evolution of VOC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted. Our study may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.


International Journal of Mass Spectrometry and Ion Processes | 1998

ON-LINE MONITORING OF VOLATILE ORGANIC COMPOUNDS AT PPTV LEVELS BY MEANS OF PROTON-TRANSFER-REACTION MASS SPECTROMETRY (PTR-MS) MEDICAL APPLICATIONS, FOOD CONTROL AND ENVIRONMENTAL RESEARCH

W. Lindinger; Armin Hansel; A. Jordan

Abstract A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henrys law constants and their dependencies on temperature as well as on the salt content of water.


Nature | 2011

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

J. Kirkby; Joachim Curtius; J. Almeida; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; S. Gagné; Luisa Ickes; Andreas Kürten; Agnieszka Kupc; Axel Metzger; Francesco Riccobono; L. Rondo; Siegfried Schobesberger; Georgios Tsagkogeorgas; Daniela Wimmer; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Josef Dommen; Andrew J. Downard; Mikael Ehn; S. Haider; Armin Hansel; Daniel Hauser; Werner Jud; Heikki Junninen; Fabian Kreissl

Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.


International Journal of Mass Spectrometry and Ion Processes | 1995

Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level

Armin Hansel; A. Jordan; R. Holzinger; P. Prazeller; W. Vogel; W. Lindinger

Abstract A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.


Nature | 2013

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere

Joao Almeida; Siegfried Schobesberger; Andreas Kürten; Ismael K. Ortega; Oona Kupiainen-Määttä; Arnaud P. Praplan; Alexey Adamov; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Josef Dommen; Neil M. Donahue; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; R. Guida; Jani Hakala; Armin Hansel; Martin Heinritzi; Henning Henschel; Tuija Jokinen; Heikki Junninen; Maija K. Kajos; Juha Kangasluoma; Helmi Keskinen; Agnieszka Kupc; Theo Kurtén

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Geophysical Research Letters | 1999

Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide

R. Holzinger; Carsten Warneke; Armin Hansel; Alfons Jordan; W. Lindinger; D. Scharffe; G. Schade; Paul J. Crutzen

Using a novel experimental technique, based on proton transfer reaction mass spectrometry, from measurements of emissions from laboratory scale biomass burning experiments, we have estimated the source strengths of several potential HOx producing gases: formaldehyde, acetaldehyde, methanol and acetone. The derived global average emissions are 5–13; 3.8–10; 1.5-4; 2.3-6.1 Tg y−1, respectively. The resulting global average HOx production from photochemical decay of these gases is 3 × 109 molecules cm−2 s−1. Although relatively small in a global context, these emissions are significant for the photochemistry in fresh fire plumes. From our measurements are also estimated global source strengths from biomass burning for CH3CN and HCN of 0.4-1.0; 0.2-0.6 Tg y−1 respectively. The biomass burning emissions of CH3CN may well dominate the global source of this compound, which thus might well be a unique tracer for biomass burning. Some discrepancies between experimental studies must, however, be resolved.


Journal of Geophysical Research | 2005

Global budget of methanol: Constraints from atmospheric observations

Daniel J. Jacob; Brendan D. Field; Qinbin Li; D. R. Blake; Joost A. de Gouw; Carsten Warneke; Armin Hansel; Armin Wisthaler; Hanwant B. Singh; Alex Guenther

factor of 3 higher for young than from mature leaves. The atmospheric lifetime of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry deposition to land 26%, wet deposition 6%, uptake by the ocean 5%, and aqueous-phase oxidation in clouds less than 1%. The resulting simulation of atmospheric concentrations is generally unbiased in the Northern Hemisphere and reproduces the observed correlations of methanol with acetone, HCN, and CO in Asian outflow. Accounting for decreasing emission from leaves as they age is necessary to reproduce the observed seasonal variation of methanol concentrations at northern midlatitudes. The main model discrepancy is over the South Pacific, where simulated concentrations are a factor of 2 too low. Atmospheric production from the CH3O2 self-reaction is the dominant model source in this region. A factor of 2 increase in this source (to 50–100 Tg yr � 1 ) would largely correct the discrepancy and appears consistent with independent constraints on CH3O2 concentrations. Our resulting best estimate of the global source of methanol is 240 Tg yr � 1 . More observations of methanol concentrations and fluxes are needed over tropical continents. Better knowledge is needed of CH3O2 concentrations in the remote troposphere and of the underlying organic chemistry.


Journal of Geophysical Research | 1999

Volatile organic compounds emitted after leaf wounding: On‐line analysis by proton‐transfer‐reaction mass spectrometry

Ray Fall; Thomas R. Karl; Armin Hansel; Alfons Jordan; W. Lindinger

Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols, and hexenyl esters), are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. Here we demonstrate that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements allow direct analysis of the rapid emission of the parent compound, (Z)-3-hexenal, within 1-2 s of wounding of aspen leaves and then its disappearance and the appearance of its metabolites including (E)-2-hexenal, hexenols, and hexenyl acetates. Similar results were seen in wounded beech leaves and clover. The emission of hexenal family compounds was proportional to the extent of wounding, was not dependent on light, occurred in attached or detached leaves, and was greatly enhanced as detached leaves dried out. Emission of (Z)-3-hexenal from detached drying aspen leaves averaged 500 m gCg 21 (dry leaf weight). Leaf wound compounds were not emitted in a nitrogen atmosphere but were released within seconds of reintroduction of oxygen; this indicates that there are not large pools of hexenyl compounds in leaves. The PTR-MS method also allows the simultaneous detection of less abundant hexanal family VOCs including hexanal, hexanol, and hexyl acetate and VOCs formed in the light (isoprene) or during anoxia (acetaldehyde). PTR- MS may be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, and other physical damage to vegetation, from harvesting of crops, and from senescing leaves.


Science | 2014

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

Francesco Riccobono; Siegfried Schobesberger; Catherine E. Scott; Josef Dommen; Ismael K. Ortega; Linda Rondo; J. Almeida; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; Armin Hansel; Heikki Junninen; Maija K. Kajos; Helmi Keskinen; Agnieszka Kupc; Andreas Kürten; Alexander N. Kvashin; Ari Laaksonen; Katrianne Lehtipalo; Vladimir Makhmutov; Serge Mathot; Tuomo Nieminen; Antti Onnela; Tuukka Petäjä

Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. (p. 717) used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere. Experiments in the CLOUD chamber at CERN reproduce particle nucleation rates observed in the lower atmosphere. Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.


Geophysical Research Letters | 2001

Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region

Meinrat O. Andreae; Paulo Artaxo; H. Fischer; Saulo R. Freitas; J.M. Grégoire; Armin Hansel; P. Hoor; R. Kormann; Radovan Krejci; L. Lange; J. Lelieveld; W. Lindinger; K. Longo; Wouter Peters; M. de Reus; Bert Scheeren; M. A. F. Silva Dias; Johan Ström; P. F. J. van Velthoven; J. Williams

During LBA-CLAIRE-98, we found atmospheric layers with aged biomass smoke at altitudes >10 km over Suriname. CO, CO2, acetonitrile, methyl chloride, hydrocarbons, NO, O3, and aerosols were strongly enhanced in these layers. We estimate that 80-95% of accumulation mode aerosols had been removed during convective transport. Trajectories show that the plumes originated from large fires near the Brazil/Venezuela border during March 1998. This smoke was entrained into deep convection over the northern Amazon, transported out over the Pacific, and then returned to South America by the circulation around a large upper-level anticyclone. Our observations provide evidence for the importance of deep convection in the equatorial region as a mechanism to transport large amounts of pyrogenic pollutants into the upper troposphere. The entrainment of biomass smoke into tropical convective clouds may have significant effects on cloud microphysics and climate dynamics.

Collaboration


Dive into the Armin Hansel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Graus

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

W. Lindinger

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Karl

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge