Armin P. Moczek
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Armin P. Moczek.
Trends in Ecology and Evolution | 2010
David W. Pfennig; Matthew A. Wund; Emilie C. Snell-Rood; Tami Cruickshank; Carl D. Schlichting; Armin P. Moczek
Phenotypic plasticity (the ability of a single genotype to produce multiple phenotypes in response to variation in the environment) is commonplace. Yet its evolutionary significance remains controversial, especially in regard to whether and how it impacts diversification and speciation. Here, we review recent theory on how plasticity promotes: (i) the origin of novel phenotypes, (ii) divergence among populations and species, (iii) the formation of new species and (iv) adaptive radiation. We also discuss the latest empirical support for each of these evolutionary pathways to diversification and identify potentially profitable areas for future research. Generally, phenotypic plasticity can play a largely underappreciated role in driving diversification and speciation.
Animal Behaviour | 2000
Armin P. Moczek; Douglas J. Emlen
In a variety of organisms morphological variation is discrete rather than continuous. Discrete variation within a sex has attracted particular interest as it is thought to reflect the existence of alternative adaptations to a heterogeneous selection environment. The beetle Onthophagus taurus shows a dimorphism for male horns: males that exceed a critical body size develop a pair of long, curved horns on their heads, while smaller males remain hornless. In this study we report on the alternative reproductive tactics used by males with these two morphologies, and present experimental and behavioural data suggesting that these alternative tactics selectively favour discretely different male phenotypes. Horned males aggressively defended tunnel entrances containing breeding females. Fights involved the use of horns, and males with longer horns were more likely to win fights. In contrast, hornless males employed nonaggressive sneaking behaviours when faced with competitively superior males. Sneaking behaviours appeared to require high degrees of manoeuvrability inside tunnels to access and mate with females despite the presence of a guarding male. Comparisons of running performances of males with identical body sizes but different horn lengths suggest that the possession of horns reduces male agility inside tunnels. Thus, horn possession confers a clear advantage to males using fighting behaviours to access females, whereas hornlessness may be favoured in males that rely primarily on sneaking behaviours. Combined, the two alternative reproductive tactics used by male O. taurus appear to favour opposite horn phenotypes, which may explain the paucity of intermediate morphologies in natural populations of O. taurus. Copyright 2000 The Association for the Study of Animal Behaviour.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Armin P. Moczek; Sonia E. Sultan; Susan A. Foster; Ian Dworkin; H. Fred Nijhout; Ehab Abouheif; David W. Pfennig
Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the ability of an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes.
BioEssays | 2010
Emilie C. Snell-Rood; James David Van Dyken; Tami Cruickshank; Michael J. Wade; Armin P. Moczek
Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role of modularity in developmental genetic networks as a mechanism underlying phenotypic plasticity, and apply to it lessons learned from population genetic theory on the interplay between relaxed selection and mutation accumulation. We argue that the environmental specificity of gene expression and the associated reduction in pleiotropic constraints drive a fundamental tradeoff between the range of plasticity that can be accommodated and mutation accumulation in alternative developmental networks. This tradeoff has broad implications for understanding the origin and maintenance of plasticity and may contribute to a better understanding of the role of plasticity in the origin, diversification, and loss of phenotypic diversity.
BioEssays | 2008
Armin P. Moczek
The origin of novel traits is what draws many to evolutionary biology, yet our understanding of the mechanisms that underlie the genesis of novelty remains limited. Here I review definitions of novelty including its relationship to homology. I then discuss how ontogenetic perspectives may allow us to move beyond current roadblocks in our understanding of the mechanics of innovation. Specifically, I explore the roles of canalization, plasticity and threshold responses during development in generating a reservoir of cryptic genetic variation free to drift and accumulate in natural populations. Environmental or genetic perturbations that exceed the buffering capacity of development can then release this variation, and, through evolution by genetic accommodation, result in rapid diversification, recurrence of lost phenotypes as well as the origins of novel features. I conclude that, in our quest to understand the nature of innovation, the nature of development deserves to take center stage.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Armin P. Moczek; Debra J. Rose
The origins of novel complex phenotypes represent one of the most fundamental, yet largely unresolved, issues in evolutionary biology. Here we explore the developmental genetic regulation of beetle horns, a class of traits that lacks obvious homology to traits in other insects. Furthermore, beetle horns are remarkably diverse in their expression, including sexual dimorphisms, male dimorphisms, and interspecific differences in location of horn expression. At the same time, beetle horns share aspects of their development with that of more traditional appendages. We used larval RNA interference-mediated gene function analysis of 3 cardinal insect appendage patterning genes,dachshund, homothorax, and Distal-less, to investigate their role in development and diversification of beetle horns within and between species. Transcript depletion of all 3 patterning genes generated phenotypic effects very similar to those documented in previous studies that focused on general insect development. In addition, we found that Distal-less and homothorax, but not dachshund, regulate horn expression in a species-, sex-, body region-, and body size-dependent manner. Our results demonstrate differential co-option of appendage patterning genes during the evolution and radiation of beetle horns. Furthermore, our results illustrate that regulatory genes whose functions are otherwise highly conserved nevertheless retain the capacity to acquire additional functions, and that little phylogenetic distance appears necessary for the evolution of sex- and species-specific differences in these functions.
The American Naturalist | 2004
Armin P. Moczek; H. Frederik Nijhout
Resource allocation trade‐offs during development affect the final sizes of adult structures and have the potential to constrain the types and magnitude of evolutionary change that developmental processes can accommodate. Such trade‐offs can arise when two or more body parts compete for a limited pool of resources to sustain their growth and differentiation. Recent studies on several holometabolous insects suggest that resource allocation trade‐offs may be most pronounced in tissues that grow physically close to each other. Here we examine the nature and magnitude of developmental trade‐offs between two very distant body parts: head horns and genitalia of males of the horned scarab beetle Onthophagus taurus. Both structures develop from imaginal disklike tissues that undergo explosive growth during late larval development but differ in exactly when they initiate their growth. We experimentally ablated the precursor cells that normally give rise to male genitalia at several time points during late larval development and examined the degree of horn development in these males compared to that of untreated and sham‐operated control males. We found that experimental males developed disproportionately larger horns. Horn overexpression was weakest in response to early ablation and most pronounced in males whose genital disks were ablated just before larvae entered the prepupal stage. Our results suggest that even distant body parts may rely on a common resource pool to sustain their growth and that the relative timing of growth may play an important role in determining whether, and how severely, growing organs will affect each other during development. We use our findings to discuss the physiological causes and evolutionary consequences of resource allocation trade‐offs.
Physiological Entomology | 2001
Majid Shafiei; Armin P. Moczek; H. Frederik Nijhout
In nature, larvae of the dung beetle Onthophagus taurus (Schreber 1759) are confronted with significant variation in the availability of food without the option of locating new resources. Here we explore how variation in feeding conditions during the final larval instar affects larval growth and the timing of pupation. We found that larvae respond to food deprivation with a reduction in the length of the instar and premature pupation, leading to the early eclosion of a small adult. To achieve pupation, larvae required access to food for at least the first 5 days of the final instar (= 30% of mean third‐instar duration in control individuals), and had to exceed a weight of 0.08 g (= 58% of mean peak weight in control individuals). Larvae that were allowed to feed longer exhibited higher pupation success, but increased larval weight at the time of food deprivation did not result in increased pupation success except for larvae weighing > 0.14 g. Larvae responded to food deprivation by initiating and undergoing the same sequence of developmental events, requiring the same amount of time, as ad libitum‐fed larvae once those had reached their natural peak weight. Our results reveal a striking degree of flexibility in the dynamics and timing of larval development in O. taurus. They also suggest that premature exhaustion of a larvas food supply can serve as a cue for the initiation of metamorphosis. Premature metamorphosis in response to food deprivation has been documented in amphibians, but this is, to the best of our knowledge, the first time such a behaviour has been documented for a holometabolous insect. We discuss our findings in the context of the natural history and behavioural ecology of onthophagine beetles.
Evolution & Development | 2003
Armin P. Moczek; H. Frederik Nijhout
SUMMARY Polyphenisms are thought to play an important role in the evolution of phenotypic diversity and the origin of morphological and behavioral novelties. However, the extent to which polyphenic developmental mechanisms evolve in natural populations is unknown. Here we contrast patterns of male phenotype expression in native and exotic and ancestral and descendant populations of the horn polyphenic beetle, Onthophagus taurus. Males in this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions do not reach this threshold size and remain hornless. We show that exotic and native populations of O. taurus differ significantly in the body size threshold that separates alternative male phenotypes. Comparison with archival museum collections and additional samples obtained from the native range of O. taurus suggests that allometric differences between exotic and native populations do not reflect preexisting variation in the native range of this species. Instead, our data suggest that threshold divergences between exotic and native populations have evolved in less than 40 years since the introduction to a new habitat and have proceeded in opposite directions in two exotic ranges of this species. Finally, we show that the kind and magnitude of threshold divergence between native and exotic populations are similar to differences normally observed between species. Our results support the view that certain components of the developmental control mechanism that underlie polyphenic development can evolve rapidly in natural populations and may provide important avenues for phenotypic differentiation and diversification in nature. We discuss the role of developmental control mechanisms in the origin of allometric diversification and explore potential evolutionary mechanisms that could drive scaling relationship evolution in nature.
Evolution & Development | 2002
Armin P. Moczek; H. Frederik Nijhout
SUMMARY Polyphenic development is thought to play a pivotal role in the origin of morphological novelties. However, little is known about how polyphenisms evolve in natural populations, the developmental mechanisms that may mediate such evolution, and the consequences of such modification for patterns of morphological variation. Here we examine the developmental mechanisms of polyphenism evolution in highly divergent natural populations of the dung beetle, Onthophagus taurus. Males of this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions during larval life do not reach this threshold size and remain hornless. Exotic populations of O. taurus have diverged dramatically in body size thresholds in less than 40 years since introduction to new habitats, resulting in the expression of highly divergent and novel horn length–body size scaling relationships in these populations. Here we show that larvae of populations that have evolved a larger threshold body size (1) have to accumulate greater mass to become competent to express the horned morph, (2) require more time to complete the final instar, (3) are less sensitive to the juvenile hormone (JH) analogue methoprene, and (4) exhibit a delay in the sensitive period for methoprene relative to other developmental events. JH has been shown previously to control horn expression in this species. Our results show that threshold evolution may be mediated via changes in the degree and timing of sensitivity to JH and may result in correlated changes in the dynamics and duration of larval development. Strain‐specific differences in JH sensitivity have previously been demonstrated in other insects. However, to the best of our knowledge this is the first demonstration that changes in the timing of the sensitive period for JH may play an equally important role in the evolution of novel thresholds. We discuss our findings in the context of the developmental regulatory mechanisms that underlie polyphenic development and use our results to explore the consequences of, and constraints on, polyphenism evolution in nature.