Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justen Andrews is active.

Publication


Featured researches published by Justen Andrews.


Nature | 2011

The developmental transcriptome of Drosophila melanogaster

Brenton R. Graveley; Angela N. Brooks; Joseph W. Carlson; Michael O. Duff; Jane M. Landolin; Li Min Yang; Carlo G. Artieri; Marijke J. van Baren; Nathan Boley; Benjamin W. Booth; James B. Brown; Lucy Cherbas; Carrie A. Davis; Alexander Dobin; Renhua Li; Wei Lin; John H. Malone; Nicolas R Mattiuzzo; David S. Miller; David Sturgill; Brian B. Tuch; Chris Zaleski; Dayu Zhang; Marco Blanchette; Sandrine Dudoit; Brian D. Eads; Richard E. Green; Ann S. Hammonds; Lichun Jiang; Phil Kapranov

Drosophila melanogaster is one of the most well studied genetic model organisms, nonetheless its genome still contains unannotated coding and non-coding genes, transcripts, exons, and RNA editing sites. Full discovery and annotation are prerequisites for understanding how the regulation of transcription, splicing, and RNA editing directs development of this complex organism. We used RNA-Seq, tiling microarrays, and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. Together, these data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Science | 2011

The ecoresponsive genome of Daphnia pulex

John K. Colbourne; Michael E. Pfrender; Donald L. Gilbert; W. Kelley Thomas; Abraham Tucker; Todd H. Oakley; Shin-ichi Tokishita; Andrea Aerts; Georg J. Arnold; Malay Kumar Basu; Darren J Bauer; Carla E. Cáceres; Liran Carmel; Claudio Casola; Jeong Hyeon Choi; John C. Detter; Qunfeng Dong; Serge Dusheyko; Brian D. Eads; Thomas Fröhlich; Kerry A. Geiler-Samerotte; Daniel Gerlach; Phil Hatcher; Sanjuro Jogdeo; Jeroen Krijgsveld; Evgenia V. Kriventseva; Dietmar Kültz; Christian Laforsch; Erika Lindquist; Jacqueline Lopez

The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions. We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Nature | 2014

Diversity and dynamics of the Drosophila transcriptome

James B. Brown; Nathan Boley; Robert C. Eisman; Gemma May; Marcus H. Stoiber; Michael O. Duff; Ben W. Booth; Jiayu Wen; Soo Park; Ana Maria Suzuki; Kenneth H. Wan; Charles Yu; Dayu Zhang; Joseph W. Carlson; Lucy Cherbas; Brian D. Eads; David J. Miller; Keithanne Mockaitis; Johnny Roberts; Carrie A. Davis; Erwin Frise; Ann S. Hammonds; Sara H. Olson; Sol Shenker; David Sturgill; Anastasia A. Samsonova; Richard Weiszmann; Garret Robinson; Juan Hernandez; Justen Andrews

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Genome Research | 2011

Genome-wide analysis of promoter architecture in Drosophila melanogaster

Roger A. Hoskins; Jane M. Landolin; James B. Brown; Jeremy E. Sandler; Hazuki Takahashi; Timo Lassmann; Charles Yu; Benjamin W. Booth; Dayu Zhang; Kenneth H. Wan; Li Yang; Nathan Boley; Justen Andrews; Thomas C. Kaufman; Brenton R. Graveley; Peter J. Bickel; Piero Carninci; Joseph W. Carlson; Susan E. Celniker

Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.


Molecular Ecology | 2006

Microarray analysis reveals differential gene expression in hybrid sunflower species

Zhao Lai; Briana L. Gross; Yi Zou; Justen Andrews; Loren H. Rieseberg

This paper describes the creation of a cDNA microarray for annual sunflowers and its use to elucidate patterns of gene expression in Helianthus annuus, Helianthus petiolaris, and the homoploid hybrid species Helianthus deserticola. The array comprises 3743 ESTs (expressed sequence tags) representing approximately 2897 unique genes. It has an average clone/EST identity rate of 91%, is applicable across species boundaries within the annual sunflowers, and shows patterns of gene expression that are highly reproducible according to real‐time RT–PCR (reverse transcription–polymerase chain reaction) results. Overall, 12.8% of genes on the array showed statistically significant differential expression across the three species. Helianthus deserticola displayed transgressive, or extreme, expression for 58 genes, with roughly equal numbers exhibiting up‐ or down‐regulation relative to both parental species. Transport‐related proteins were strongly over‐represented among the transgressively expressed genes, which makes functional sense given the extreme desert floor habitat of H. deserticola. The potential adaptive value of differential gene expression was evaluated for five genes in two populations of early generation (BC2) hybrids between the parental species grown in the H. deserticola habitat. One gene (a G protein‐coupled receptor) had a significant association with fitness and maps close to a QTL controlling traits that may be adaptive in the desert habitat.


Theoretical and Applied Genetics | 2005

Identification and mapping of SNPs from ESTs in sunflower

Zhao Lai; K. Livingstone; Yi Zou; Sheri A. Church; Steven J. Knapp; Justen Andrews; Loren H. Rieseberg

More than 67,000 expressed sequence tags (ESTs) have recently been generated for sunflower (Helianthus), including 44,000 from cultivated confectionery (RHA280) and oilseed (RHA801) lines of Helianthus annuus and 23,000 from drought- and salt-tolerant wild sunflowers, H. argophyllus and H. paradoxus, respectively. To create a transcript map for sunflower, we identified 605 ESTs that displayed small insertion–deletion polymorphism (SNP) variation in silico, had apparent tissue-specific expression patterns, and/or were ESTs with candidate functions in traits such as development, cell transport, metabolism, plant defense, and tolerance to abiotic stress. Primer pairs for 535 of the loci were designed from the ESTs and screened for polymorphism in recombinant inbred lines derived from a cross between the same cultivars (RHA280 × RHA801) employed for sequencing. In total, 273 of the loci amplified polymorphic products, of which 243 mapped to the 17 linkage groups previously identified for sunflower. Comparisons with previously mapped QTL revealed some cases where ESTs with putatively related functions mapped near QTLs identified in other crosses for salt tolerance and for domestication traits such as stem diameter, shattering, flowering time, and achene size.


Heredity | 2008

Ecological genomics in Daphnia : stress responses and environmental sex determination

Brian D. Eads; Justen Andrews; John K. Colbourne

Ecological genomics is the study of adaptation of natural populations to their environment, and therefore seeks to link organism and population level processes through an understanding of genome organization and function. The planktonic microcrustacean Daphnia, which has long been an important system for ecology, is now being used as a genomic model as well. Here we review recent progress in selected areas of Daphnia genomics research. Production of parthenogenetic male offspring occurs through environmental cues, which clearly involves endocrine regulation and has also been studied as a toxicological response to juvenoid hormone analog insecticides. Recent progress has uncovered a putative juvenoid cis-response element, which together with microarray analysis will stimulate further research into nuclear hormone receptors and their associated transcriptional regulatory networks. Ecotoxicological studies indicate that mRNA profiling is a sensitive and specific research tool with promising applications in environmental monitoring and for uncovering conserved cellular processes. Rapid progress is expected to continue in these and other areas, as genomic tools for Daphnia become widely available to investigators.


Evolution | 2011

DEVELOPMENTAL DECOUPLING OF ALTERNATIVE PHENOTYPES: INSIGHTS FROM THE TRANSCRIPTOMES OF HORN-POLYPHENIC BEETLES

Emilie C. Snell-Rood; Amy Cash; Mira V. Han; Teiya Kijimoto; Justen Andrews; Armin P. Moczek

Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph‐biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual‐ and morph‐dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph‐biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns.

Teiya Kijimoto; Armin P. Moczek; Justen Andrews

Sex-specific trait expression is frequently associated with highly variable, condition-dependent expression within sexes and rapid divergence among closely related species. Horned beetles are an excellent example for studying the molecular basis of these phenomena because horn morphology varies markedly among species, between sexes, and among alternative, nutritionally-cued morphs within sexes. In addition, horns lack obvious homology to other insect traits and provide a good opportunity to explore the molecular basis of the rapid diversification of a novel trait within and between species. Here we show that the sex-determination gene doublesex (dsx) underlies important aspects of horn development, including differences between sexes, morphs, and species. In male Onthophagus taurus, dsx transcripts were preferentially expressed in the horns of the large, horned morph, and RNAi-mediated knockdown of dsx dramatically altered male horn allometry by massively reducing horn development in large males, but not in smaller males. Conversely, dsx RNAi induced ectopic, nutrition-sensitive horn development in otherwise hornless females. Finally, in a closely related species (Onthophagus sagittarius) that has recently evolved a rare reversed sexual dimorphism, dsx RNAi revealed reversed as well as novel dsx functions despite an overall conservation of dsx expression. This suggests that rapid evolution of dsx functions has facilitated the transition from a regular sexual dimorphism to a reversed sexual dimorphism in this species. Our findings add beetle horns to existing examples of a close relationship between dsx and sexual trait development, and suggest that dsx function has been coopted to facilitate both the evolution of environmentally-cued intrasexual dimorphisms and rapid species divergences in a novel trait.

Collaboration


Dive into the Justen Andrews's collaboration.

Top Co-Authors

Avatar

Brian D. Eads

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dayu Zhang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Teiya Kijimoto

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Kevin Bogart

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Lucy Cherbas

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph W. Carlson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brenton R. Graveley

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Jeong Hyeon Choi

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge