Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armin Schlereth is active.

Publication


Featured researches published by Armin Schlereth.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Circadian control of carbohydrate availability for growth in Arabidopsis plants at night

Alexander Graf; Armin Schlereth; Mark Stitt; Alison M. Smith

Plant growth is driven by photosynthetic carbon fixation during the day. Some photosynthate is accumulated, often as starch, to support nocturnal metabolism and growth at night. The rate of starch degradation in Arabidopsis leaves at night is essentially linear, and is such that almost all of the starch is used by dawn. We have investigated the timer that matches starch utilization to the duration of the night. The rate of degradation adjusted immediately and appropriately to an unexpected early onset of night. Starch was still degraded in an appropriate manner when the preceding light period was interrupted by a period of darkness. However, when Arabidopsis was grown in abnormal day lengths (28 h or 17 h) starch was exhausted ∼24 h after the last dawn, irrespective of the actual dawn. A mutant lacking the LHY and CCA1 clock components exhausted its starch at the dawn anticipated by its fast-running circadian clock, rather than the actual dawn. Reduced growth of wild-type plants in 28-h days and lhy/cca1 mutants in 24-h days was attributable to the inappropriate rate of starch degradation and the consequent carbon starvation at the end of night. Thus, starch degradation is under circadian control to ensure that carbohydrate availability is maintained until the next anticipated dawn, and this control is necessary for maintaining plant productivity.


Science | 2013

Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana

Vanessa Wahl; Jathish Ponnu; Armin Schlereth; Stéphanie Arrivault; Tobias Langenecker; Annika Franke; Regina Feil; John E. Lunn; Mark Stitt; Markus Schmid

Sweet Enough to Flower In making the developmental switch from vegetative growth to flowering, plants integrate diverse information, including photoperiod, hormone signals, and carbohydrate status. Wahl et al. (p. 704; see the Perspective by Danielson and Frommer) analyzed the physiology of the signaling sugar trehalose-6-phosphate (T6P) in Arabidopsis. Quantities of T6P cycle in daily rhythms that peak toward the end of the day. T6P levels in the shoot apical meristem mirrored sucrose levels. Disruption of T6P production also disrupted expression of the FLOWERING LOCUS T gene, which responds in leaves to day length and generates signals that direct the meristem to initiate flowering programs. T6P production also affected the signaling pathway that links the age of the plant to flowering. By incorporating requirements for T6P signaling in the flowering induction pathways, the plant ensures that adequate carbohydrate reserves have been accumulated. Thus, T6P regulates the shift to flowering by linking carbohydrate status to day length in the leaves and to developmental age in the shoot apical meristem. Specific sugar signals integrate carbohydrate status with day length and developmental age to regulate flowering. [Also see Perspective by Danielson and Frommer] The timing of the induction of flowering determines to a large extent the reproductive success of plants. Plants integrate diverse environmental and endogenous signals to ensure the timely transition from vegetative growth to flowering. Carbohydrates are thought to play a crucial role in the regulation of flowering, and trehalose-6-phosphate (T6P) has been suggested to function as a proxy for carbohydrate status in plants. The loss of TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) causes Arabidopsis thaliana to flower extremely late, even under otherwise inductive environmental conditions. This suggests that TPS1 is required for the timely initiation of flowering. We show that the T6P pathway affects flowering both in the leaves and at the shoot meristem, and integrate TPS1 into the existing genetic framework of flowering-time control.


Plant Physiology | 2007

Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses

Georgina Hernández; Mario Ramírez; Oswaldo Valdés-López; Mesfin Tesfaye; Michelle A. Graham; Tomasz Czechowski; Armin Schlereth; Maren Wandrey; Alexander Erban; Foo Cheung; Hank Wu; Miguel Lara; Christopher D. Town; Joachim Kopka; Michael K. Udvardi; Carroll P. Vance

Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.


Plant Physiology | 2008

Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome

Zuzanna Bieniawska; Carmen Espinoza; Armin Schlereth; Ronan Sulpice; Dirk K. Hincha; Matthew A. Hannah

In plants, low temperature causes massive transcriptional changes, many of which are presumed to be involved in the process of cold acclimation. Given the diversity of developmental and environmental factors between experiments, it is surprising that their influence on the identification of cold-responsive genes is largely unknown. A systematic investigation of genes responding to 1 d of cold treatment revealed that diurnal- and circadian-regulated genes are responsible for the majority of the substantial variation between experiments. This is contrary to the widespread assumption that these effects are eliminated using paired diurnal controls. To identify the molecular basis for this variation, we performed targeted expression analyses of diurnal and circadian time courses in Arabidopsis (Arabidopsis thaliana). We show that, after a short initial cold response, in diurnal conditions cold reduces the amplitude of cycles for clock components and dampens or disrupts the cycles of output genes, while in continuous light all cycles become arrhythmic. This means that genes identified as cold-responsive are dependent on the time of day the experiment was performed and that a control at normal temperature will not correct for this effect, as was postulated up to now. Time of day also affects the number and strength of expression changes for a large number of transcription factors, and this likely further contributes to experimental differences. This reveals that interactions between cold and diurnal regulation are major factors in shaping the cold-responsive transcriptome and thus will be an important consideration in future experiments to dissect transcriptional regulatory networks controlling cold acclimation. In addition, our data revealed differential effects of cold on circadian output genes and a unique regulation of an oscillator component, suggesting that cold treatment could also be an important tool to probe circadian and diurnal regulatory mechanisms.


Plant Physiology | 2005

Ectopic Expression of an Amino Acid Transporter (VfAAP1) in Seeds of Vicia narbonensis and Pea Increases Storage Proteins

Hardy Rolletschek; Felicia Hosein; Manoela Miranda; Ute Heim; Klaus-Peter Götz; Armin Schlereth; Ljudmilla Borisjuk; Isolde Saalbach; Ulrich Wobus; Hans Weber

Storage protein synthesis is dependent on available nitrogen in the seed, which may be controlled by amino acid import via specific transporters. To analyze their rate-limiting role for seed protein synthesis, a Vicia faba amino acid permease, VfAAP1, has been ectopically expressed in pea (Pisum sativum) and Vicia narbonensis seeds under the control of the legumin B4 promoter. In mature seeds, starch is unchanged but total nitrogen is 10% to 25% higher, which affects mainly globulin, vicilin, and legumin, rather than albumin synthesis. Transgenic seeds in vitro take up more [14C]-glutamine, indicating increased sink strength for amino acids. In addition, more [14C] is partitioned into proteins. Levels of total free amino acids in growing seeds are unchanged but with a shift toward higher relative abundance of asparagine, aspartate, glutamine, and glutamate. Hexoses are decreased, whereas metabolites of glycolysis and the tricarboxylic acid cycle are unchanged or slightly lower. Phosphoenolpyruvate carboxylase activity and the phosphoenolpyruvate carboxylase-to-pyruvate kinase ratios are higher in seeds of one and three lines, indicating increased anaplerotic fluxes. Increases of individual seed size by 20% to 30% and of vegetative biomass indicate growth responses probably due to improved nitrogen status. However, seed yield per plant was not altered. Root application of [15N] ammonia results in significantly higher label in transgenic seeds, as well as in stems and pods, and indicates stimulation of nitrogen root uptake. In summary, VfAAP1 expression increases seed sink strength for nitrogen, improves plant nitrogen status, and leads to higher seed protein. We conclude that seed protein synthesis is nitrogen limited and that seed uptake activity for nitrogen is rate limiting for storage protein synthesis.


Plant Physiology | 2009

AtMyb41 Regulates Transcriptional and Metabolic Responses to Osmotic Stress in Arabidopsis

Felix Lippold; Diego H. Sanchez; Magdalena Musialak; Armin Schlereth; Wolf-Ruediger Scheible; Dirk K. Hincha; Michael K. Udvardi

Myb transcription factors have been implicated in a wide variety of plant-specific processes, including secondary metabolism, cell shape determination, cell differentiation, and stress responses. Very recently, AtMyb41 from Arabidopsis (Arabidopsis thaliana) was described as a gene transcriptionally regulated in response to salinity, desiccation, cold, and abscisic acid. The corresponding transcription factor was suggested to control stress responses linked to cell wall modifications. In this work, we have characterized AtMyb41 further by subjecting independent AtMyb41-overexpressing lines to detailed transcriptome and metabolome analysis. Our molecular data indicate that AtMyb41 is involved in distinct cellular processes, including control of primary metabolism and negative regulation of short-term transcriptional responses to osmotic stress.


Plant Cell and Environment | 2014

Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species

Ronan Sulpice; Hirofumi Ishihara; Armin Schlereth; Gregory R. Cawthray; Beatrice Encke; Patrick Giavalisco; Alexander Ivakov; Stéphanie Arrivault; Ricarda Jost; Nicole Krohn; John Kuo; Etienne Laliberté; Stuart J. Pearse; John A. Raven; Wolf-Rüdiger Scheible; François P. Teste; Erik J. Veneklaas; Mark Stitt; Hans Lambers

Abstract Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin–Benson cycle enzymes. In mature leaves, soluble protein and Calvin–Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin–Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Molecular Plant-microbe Interactions | 2007

Metabolism of Reactive Oxygen Species Is Attenuated in Leghemoglobin-Deficient Nodules of Lotus japonicus

Catrin S. Günther; Armin Schlereth; Michael K. Udvardi; Thomas Ott

Leghemoglobins together with high rates of respiration are believed to be major sources of reactive oxygen species (ROS) in root nodules of leguminous plants. High capacities of antioxidative systems apparently protect this organ from oxidative damage. Using leghemoglobin-RNA interference (LbRNAi) lines of Lotus japonicus, we found that loss of leghemoglobin results in significantly lower H(2)O(2) levels in nodules. Transcript levels and catalytic activities of ascorbate-glutathione cycle enzymes involved in H(2)O(2) detoxification as well as concentrations of reduced ascorbate were also altered in LbRNAi nodules. Thus, symbiotic leghemoglobins contribute significantly to ROS generation in functional nodules.


Plant Science | 2012

Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309

M. R. Siahpoosh; Diego H. Sanchez; Armin Schlereth; G. N. Scofield; R. T. Furbank; J. T. van Dongen; Joachim Kopka

A metabolic depletion syndrome was discovered at early vegetative stages in roots of salt sensitive rice cultivars after prolonged exposure to 100mM NaCl. Metabolite profiling analyses demonstrate that this syndrome is part of the terminal stages of the rice salt response. The phenotype encompasses depletion of at least 30 primary metabolites including sucrose, glucose, fructose, glucose-6-P, fructose-6P, organic- and amino-acids. Based on these observations we reason that sucrose allocation to the root may modify the rice response to high salt. This hypothesis was tested using antisense lines of the salt responsive OsSUT1 gene in the salt sensitive Taipei 309 cultivar. Contrary to our expectations of a plant system impaired in one component of sucrose transport, we find improved gas exchange and photosynthetic performance as well as maintenance of sucrose levels in the root under high salinity. Two independent OsSUT1 lines with an antisense inhibition similar to the naturally occurring salt induced reduction of OsSUT1 gene expression showed these phenomena but not a more extreme antisense inhibition line. We investigated the metabolic depletion syndrome by metabolomic and physiological approaches and discuss our results with regard to the potential role of sucrose transporters and sucrose transport for rice salt acclimation.


Plant Cell and Environment | 2016

Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth

Martin A. Lauxmann; Maria Grazia Annunziata; Géraldine Brunoud; Vanessa Wahl; Andrzej Koczut; Asdrubal Burgos; Justyna Jadwiga Olas; Eugenia Maximova; Christin Abel; Armin Schlereth; Aleksandra Maria Soja; Oliver Bläsing; John E. Lunn; Teva Vernoux; Mark Stitt

The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again.

Collaboration


Dive into the Armin Schlereth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronan Sulpice

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge