Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnaud Firon is active.

Publication


Featured researches published by Arnaud Firon.


Infection and Immunity | 2010

Candida glabrata Persistence in Mice Does Not Depend on Host Immunosuppression and Is Unaffected by Fungal Amino Acid Auxotrophy

Ilse D. Jacobsen; Sascha Brunke; Katja Seider; Tobias Schwarzmüller; Arnaud Firon; Christophe d'Enfert; Karl Kuchler; Bernhard Hube

ABSTRACT Candida glabrata has emerged as an important fungal pathogen of humans, causing life-threatening infections in immunocompromised patients. In contrast, mice do not develop disease upon systemic challenge, even with high infection doses. In this study we show that leukopenia, but not treatment with corticosteroids, leads to fungal burdens that are transiently increased over those in immunocompetent mice. However, even immunocompetent mice were not capable of clearing infections within 4 weeks. Tissue damage and immune responses to microabscesses were mild as monitored by clinical parameters, including blood enzyme levels, histology, myeloperoxidase, and cytokine levels. Furthermore, we investigated the suitability of amino acid auxotrophic C. glabrata strains for in vitro and in vivo studies of fitness and/or virulence. Histidine, leucine, or tryptophan auxotrophy, as well as a combination of these auxotrophies, did not influence in vitro growth in rich medium. The survival of all auxotrophic strains in immunocompetent mice was similar to that of the parental wild-type strain during the first week of infection and was only mildly reduced 4 weeks after infection, suggesting that C. glabrata is capable of utilizing a broad range of host-derived nutrients during infection. These data suggest that C. glabrata histidine, leucine, or tryptophan auxotrophic strains are suitable for the generation of knockout mutants for in vivo studies. Notably, our work indicates that C. glabrata has successfully developed immune evasion strategies enabling it to survive, disseminate, and persist within mammalian hosts.


PLOS Pathogens | 2012

D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density

Ron Saar-Dover; Arkadi Bitler; Ravit Nezer; Liraz Shmuel-Galia; Arnaud Firon; Eyal Shimoni; Patrick Trieu-Cuot; Yechiel Shai

Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.


PLOS Pathogens | 2014

Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

Tobias Schwarzmüller; Biao Ma; Ekkehard Hiller; Fabian Istel; Michael Tscherner; Sascha Brunke; Lauren Ames; Arnaud Firon; Brian Green; Vitor Cabral; Marina Marcet-Houben; Ilse D. Jacobsen; Jessica Quintin; Katja Seider; Ingrid E. Frohner; Walter Glaser; Helmut Jungwirth; Sophie Bachellier-Bassi; Murielle Chauvel; Ute Zeidler; Dominique Ferrandon; Toni Gabaldón; Bernhard Hube; Christophe d'Enfert; Steffen Rupp; Brendan P. Cormack; Ken Haynes; Karl Kuchler

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.


Eukaryotic Cell | 2003

Identification of Essential Genes in the Human Fungal Pathogen Aspergillus fumigatus by Transposon Mutagenesis

Arnaud Firon; François Villalba; Roland Beffa; Christophe d'Enfert

ABSTRACT The opportunistic pathogen Aspergillus fumigatus is the most frequent cause of deadly airborne fungal infections in developed countries. In order to identify novel antifungal-drug targets, we investigated the genome of A. fumigatus for genes that are necessary for efficient fungal growth. An artificial A. fumigatus diploid strain with one copy of an engineered impala160 transposon from Fusarium oxysporum integrated into its genome was used to generate a library of diploid strains by random in vivo transposon mutagenesis. Among 2,386 heterozygous diploid strains screened by parasexual genetics, 1.2% had a copy of the transposable element integrated into a locus essential for A. fumigatus growth. Comparison of genomic sequences flanking impala160 in these mutants with that of the genome of A. fumigatus allowed the characterization of 20 previously uncharacterized A. fumigatus genes. Among these, homologues of genes essential for Saccharomyces cerevisiae growth have been identified, as well as genes that do not have homologues in other fungal species. These results confirm that heterologous transposition using the transposable element impala is a powerful tool for functional genomics in ascomycota, and they pave the way for defining the complete set of essential genes in A. fumigatus, the first step toward target-based development of new antifungal drugs.


Molecular Microbiology | 2007

The SUN41 and SUN42 genes are essential for cell separation in Candida albicans.

Arnaud Firon; Sylvie Aubert; Ismaïl Iraqui; Stéphanie Guadagnini; Sophie Goyard; Marie-Christine Prévost; Guilhem Janbon; Christophe d'Enfert

Completion of the yeast cell cycle involves extensive remodelling of the cell wall upon separation of mother and daughter cells. We have studied two members of the ascomycete‐specific SUN gene family in Candida albicans. Inactivation of SUN41 yields defects in cell separation and hyphal elongation while inactivation of SUN42 results in minor phenotypic alterations. Simultaneous inactivation of SUN41 and SUN42 is synthetically lethal due to lysis of mother cells after septation. Electronic microscopy reveals cell wall defects mainly localized in the region surrounding the septa. This phenotype is osmoremediable and the conditional double mutants show increased sensitivity to cell wall or cell membrane perturbing agents. The essential function shared by Sun41p and Sun42p is conserved among yeasts because UTH1, a Saccharomyces cerevisiae SUN gene, suppresses the lethality of SUN41 and SUN42 conditional mutants. Investigation of functional genomic data obtained in S. cerevisiae reveals links between members of the SUN gene family and the RAM pathway regulating cell wall‐degrading enzymes specifically involved during cell separation. Thus, the main function of ascomycetous Sun proteins appears linked to cell wall remodelling, with a probable role in counter‐balancing cell wall degradation to avoid cell lysis upon cell separation.


PLOS ONE | 2012

A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness

Murielle Chauvel; Audrey Nesseir; Vitor Cabral; Sadri Znaidi; Sophie Goyard; Sophie Bachellier-Bassi; Arnaud Firon; Mélanie Legrand; Dorothée Diogo; Claire Naulleau; Tristan Rossignol; Christophe d’Enfert

Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.


Journal of Biological Chemistry | 2014

RNA and β-Hemolysin of Group B Streptococcus Induce Interleukin-1β (IL-1β) by Activating NLRP3 Inflammasomes in Mouse Macrophages

Rahul Gupta; Shubhendu Ghosh; Brian G. Monks; Rosane B. DeOliveira; Te-Chen Tzeng; Parisa Kalantari; Anubhab Nandy; Bornali Bhattacharjee; Jennie Chan; Fabianno Ferreira; Vijay A. K. Rathinam; Shrutie Sharma; Egil Lien; Neal S. Silverman; Katherine A. Fitzgerald; Arnaud Firon; Patrick Trieu-Cuot; Philipp Henneke; Douglas T. Golenbock

Background: Group B Streptococcus (GBS) activates the NLRP3 inflammasome. Results: GBS RNA escapes the phagolysosome and activates the NLRP3 inflammasome in a β-hemolysin-dependent fashion. RNA-NLRP3 interaction and activation are enhanced by lysosomal leakage. Conclusion: RNA activates the NLRP3 inflammasome in synergy with phagolysosomal proteins. Significance: The NLRP3 inflammasome responds to bacterial invasion via RNA recognition subsequent to phagolysosomal degradation. The inflammatory cytokine IL-1β is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, β-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1β production.


Journal of Biological Chemistry | 2014

FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions

Marco Buscetta; Salvatore Papasergi; Arnaud Firon; Carmelo Biondo; Giuseppe Mancuso; Angelina Midiri; Letizia Romeo; Giuseppe Teti; Pietro Speziale; Patrick Trieu-Cuot; Concetta Beninati

Background: Streptococcus agalactiae (GBS) must bind to fibrinogen to cross host barriers and cause disease. Results: A novel fibrinogen-binding protein of GBS, named FbsC, was shown to be required for efficient invasion of human cells. Conclusion: GBS utilizes FbsC to adhere to fibrinogen on human cells and invade them. Significance: Blocking the function of FbsC may be useful to prevent or treat infections by GBS. Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine.


PLOS ONE | 2011

The GBS PI-2a Pilus Is Required for Virulence in Mice Neonates

Salvatore Papasergi; Sara Brega; Michel-Yves Mistou; Arnaud Firon; Virginie Oxaran; Ron Saar Dover; Giuseppe Teti; Yechiel Shai; Patrick Trieu-Cuot; Shaynoor Dramsi

Background Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis and meningitis in newborns. Most bacterial pathogens, including gram-positive bacteria, have long filamentous structures known as pili extending from their surface. Although pili are described as adhesive organelles, they have been also implicated in many other functions including thwarting the host immune responses. We previously characterized the pilus-encoding operon PI-2a (gbs1479-1474) in strain NEM316. This pilus is composed of three structural subunit proteins: PilA (Gbs1478), PilB (Gbs1477), and PilC (Gbs1474), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component whereas PilA, the pilus associated adhesin, and PilC the pilus anchor are both accessory proteins incorporated into the pilus backbone. Methodology/Principal Findings In this study, the role of the major pilin subunit PilB was tested in systemic virulence using 6-weeks old and newborn mice. Notably, the non-piliated ΔpilB mutant was less virulent than its wild-type counterpart in the newborn mice model. Next, we investigated the possible role(s) of PilB in resistance to innate immune host defenses, i.e. resistance to macrophage killing and to antimicrobial peptides. Phagocytosis and survival of wild-type NEM316 and its isogenic ΔpilB mutant in immortalized RAW 264.7 murine macrophages were not significantly different whereas the isogenic ΔsodA mutant was more susceptible to killing. These results were confirmed using primary peritoneal macrophages. We also tested the activities of five cationic antimicrobial peptides (AMP-1D, LL-37, colistin, polymyxin B, and mCRAMP) and found no significant difference between WT and ΔpilB strains whereas the isogenic dltA mutant showed increased sensitivity. Conclusions/Significance These results question the previously described role of PilB pilus in resistance to the host immune defenses. Interestingly, PilB was found to be important for virulence in the neonatal context.


PLOS Pathogens | 2013

The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus

Arnaud Firon; Asmaa Tazi; Violette Da Cunha; Sophie Brinster; Elisabeth Sauvage; Shaynoor Dramsi; Douglas T. Golenbock; Philippe Glaser; Claire Poyart; Patrick Trieu-Cuot

Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS.

Collaboration


Dive into the Arnaud Firon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge