Sophie Bachellier-Bassi
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Bachellier-Bassi.
PLOS Pathogens | 2014
Tobias Schwarzmüller; Biao Ma; Ekkehard Hiller; Fabian Istel; Michael Tscherner; Sascha Brunke; Lauren Ames; Arnaud Firon; Brian Green; Vitor Cabral; Marina Marcet-Houben; Ilse D. Jacobsen; Jessica Quintin; Katja Seider; Ingrid E. Frohner; Walter Glaser; Helmut Jungwirth; Sophie Bachellier-Bassi; Murielle Chauvel; Ute Zeidler; Dominique Ferrandon; Toni Gabaldón; Bernhard Hube; Christophe d'Enfert; Steffen Rupp; Brendan P. Cormack; Ken Haynes; Karl Kuchler
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.
PLOS ONE | 2012
Murielle Chauvel; Audrey Nesseir; Vitor Cabral; Sadri Znaidi; Sophie Goyard; Sophie Bachellier-Bassi; Arnaud Firon; Mélanie Legrand; Dorothée Diogo; Claire Naulleau; Tristan Rossignol; Christophe d’Enfert
Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.
PLOS Pathogens | 2012
Pilar Gutiérrez-Escribano; Ute Zeidler; M. Belén Suárez; Sophie Bachellier-Bassi; Andrés Clemente-Blanco; Julie Bonhomme; Carlos R. Vázquez de Aldana; Christophe d'Enfert; Jaime Correa-Bordes
In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Δ cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Δ strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.
Journal of Structural Biology | 2008
Sophie Bachellier-Bassi; Olivier Gadal; Gaëlle Bourout; Ulf Nehrbass
In budding yeast mitosis is endonuclear and associated with a very limited condensation of the chromosomes. Despite this partial chromosomal condensation, condensin is conserved and essential for the Saccharomyces cerevisiae mitotic cycle. Here, we investigate the localization of condensin during the mitotic cycle. In addition to a constitutive association with rDNA, we have discovered that condensin is localized to the kinetochore in a cell cycle-dependent manner. Shortly after duplication of the spindle pole body, the yeast equivalent of the centrosome, we observed a local enrichment of condensin colocalizing with kinetochore components. This specific association is consistent with mutant phenotypes of chromosome loss and defective sister chromatid separation at anaphase. During a short period of the cell cycle, we observed, at the single cell level, a spatial proximity of condensin and a cohesin rosette, without colocalization. Furthermore, using a genetic screen we demonstrated that condensin localization at kinetochores is specifically impaired in a mutant for ulp2/smt4, an abundant SUMO protease. In conclusion, during chromosome segregation, we established a SUMO-dependent cell cycle-specific condensin concentration colocalizing with kinetochores.
PLOS Pathogens | 2014
Vitor Cabral; Sadri Znaidi; Louise A. Walker; Hélène Martin-Yken; Etienne Dague; Mélanie Legrand; Keunsook K. Lee; Murielle Chauvel; Arnaud Firon; Tristan Rossignol; Mathias L. Richard; Carol A. Munro; Sophie Bachellier-Bassi; Christophe d'Enfert
Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence.
Methods of Molecular Biology | 2012
Vitor Cabral; Murielle Chauvel; Arnaud Firon; Mélanie Legrand; Audrey Nesseir; Sophie Bachellier-Bassi; Yogesh Chaudhari; Carol A. Munro; Christophe d’Enfert
Over-expression is a valid functional genomics approach to characterise genes of unknown function on a genome-wide scale. Strains are engineered to over-express a specific gene and the resulting gain-of-function phenotype assessed. Here, we describe the strategy we are adopting to synthesise a Candida albicans ORFeome collection and the options available to create over-expressing strains from this collection.
Journal of Biological Chemistry | 2013
Amandine Gastebois; Vishukumar Aimanianda; Sophie Bachellier-Bassi; Audrey Nesseir; Arnaud Firon; Anne Beauvais; Christine Schmitt; Patrick England; Remi Beau; Marie-Christine Prévost; Christophe d'Enfert; Jean-Paul Latgé; Isabelle Mouyna
Background: SUN proteins are involved in yeast morphogenesis, but their function is unknown. Results: SUN protein plays a role in the Aspergillus fumigatus morphogenesis. Biochemical properties of recombinant SUN proteins were elucidated. Conclusion: Both Candida albicans and Aspergillus fumigatus SUN proteins show a β-(1,3)-glucanase activity. Significance: The mode of action of SUN proteins on β-(1,3)-glucan is unique, new, and original. In yeasts, the family of SUN proteins has been involved in cell wall biogenesis. Here, we report the characterization of SUN proteins in a filamentous fungus, Aspergillus fumigatus. The function of the two A. fumigatus SUN genes was investigated by combining reverse genetics and biochemistry. During conidial swelling and mycelial growth, the expression of AfSUN1 was strongly induced, whereas the expression of AfSUN2 was not detectable. Deletion of AfSUN1 negatively affected hyphal growth and conidiation. A closer examination of the morphological defects revealed swollen hyphae, leaky tips, intrahyphal growth, and double cell wall, suggesting that, like in yeast, AfSun1p is associated with cell wall biogenesis. In contrast to AfSUN1, deletion of AfSUN2 either in the parental strain or in the AfSUN1 single mutant strain did not affect colony and hyphal morphology. Biochemical characterization of the recombinant AfSun1p and Candida albicans Sun41p showed that both proteins had a unique hydrolysis pattern: acting on β-(1,3)-oligomers from dimer up to insoluble β-(1,3)-glucan. Referring to the CAZy database, it is clear that fungal SUN proteins represent a new family of glucan hydrolases (GH132) and play an important morphogenetic role in fungal cell wall biogenesis and septation.
Molecular Microbiology | 2017
Virginia Basso; Sadri Znaidi; Valentine Lagage; Vitor Cabral; Franziska Schoenherr; Salomé LeibundGut-Landmann; Christophe d'Enfert; Sophie Bachellier-Bassi
Skn7 is a conserved fungal heat shock factor‐type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two‐component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress‐protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome‐wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) in filament‐inducing conditions on solid medium. Interestingly, functional domain mapping using site‐directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily‐conserved regulator to protect itself from intracellular ROS during morphological development.
Nucleic Acids Research | 2018
Mélanie Legrand; Sophie Bachellier-Bassi; Keunsook K. Lee; Yogesh Chaudhari; Hélène Tournu; Laurence Arbogast; Hélène Boyer; Murielle Chauvel; Vitor Cabral; Corinne Maufrais; Audrey Nesseir; Irena Maslanka; Emmanuelle Permal; Tristan Rossignol; Louise A. Walker; Ute Zeidler; Sadri Znaidi; Floris Schoeters; Charlotte Majgier; Renaud A Julien; Laurence Ma; Magali Tichit; Christiane Bouchier; Patrick Van Dijck; Carol A. Munro; Christophe d’Enfert
Abstract The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein–protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.
bioRxiv | 2018
Iryna Denega; Christophe d'Enfert; Sophie Bachellier-Bassi
Candida albicans is known for its ability to form biofilms – communities of microorganisms embedded in an extracellular matrix developing on different surfaces. Biofilms are highly tolerant to antifungal therapy. This phenomenon has been partially explained by the appearance of so-called persister cells, phenotypic variants of wild-type cells, capable of surviving very high concentrations of antimicrobial agents. Persister cells in C. albicans were found exceptionally in biofilms while none were detected in planktonic cultures of this fungus. Yet, this topic remains controversial as others could not observe persister cells in biofilms formed by the C. albicans SC5314 laboratory strain. Due to ambiguous data in the literature, this work aimed to reevaluate the presence of persister cells in C. albicans biofilms. We demonstrated that isolation of C. albicans “persister cells” as described previously was likely to be the result of survival of biofilm cells that were not reached by the antifungal. We tested biofilms of SC5314 and its derivatives, as well as 95 clinical isolates, using an improved protocol, demonstrating that persister cells are not a characteristic trait of C. albicans biofilms. Although some clinical isolates are able to yield survivors upon the antifungal treatment of biofilms, this phenomenon is rather stochastic and inconsistent.