Arnd Ritz
Philips
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnd Ritz.
Journal of Physics D | 2005
Guenther Hans Derra; Holger Moench; Ernst Fischer; Hermann Giese; Ulrich Hechtfischer; Gero Heusler; Achim Gerhard Rolf Koerber; Ulrich Niemann; Pavel Pekarski; Jens Pollmann-Retsch; Arnd Ritz; Ulrich Weichmann
Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W −1 , the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed. (Some figures in this article are in colour only in the electronic version)
international conference of the ieee engineering in medicine and biology society | 2011
Anne K. Porbadnigk; Simon Scholler; Benjamin Blankertz; Arnd Ritz; Matthias Born; Robert Peter Scholl; Klaus-Robert Müller; Gabriel Curio; Matthias Sebastian Treder
Lighting in modern-day devices is often discrete. The sharp onsets and offsets of light are known to induce a steady-state visually evoked potential (SSVEP) in the electroencephalogram (EEG) at low frequencies. However, it is not well-known how the brain processes visual flicker at the threshold of conscious perception and beyond. To shed more light on this, we ran an EEG study in which we asked participants (N=6) to discriminate on a behavioral level between visual stimuli in which they perceived flicker and those that they perceived as constant wave light. We found that high frequency flicker which is not perceived consciously anymore still elicits a neural response in the corresponding frequency band of EEG, con-tralateral to the stimulated hemifield. The main contribution of this paper is to show the benefit of machine learning techniques for investigating this effect of subconscious processing: Common Spatial Pattern (CSP) filtering in combination with classification based on Linear Discriminant Analysis (LDA) could be used to reveal the effect for additional participants and stimuli, with high statistical significance. We conclude that machine learning techniques are a valuable extension of conventional neurophysiological analysis that can substantially boost the sensitivity to subconscious effects, such as the processing of imperceptible flicker.
Journal of The Society for Information Display | 2003
Holger Moench; Arnd Ritz
Projection systems have reached convincing performance with several thousand screen lumens created by systems of only a few liters in volume. With more than 10 lm/W they are the most efficient display systems realized today. The tremendous progress achieved up to now relies on the outstanding properties of the UHP lamp. The combination of high brightness with lifetimes extending up to more than 10,000 hours is ideal for projection applications. This paper will summarize some recent technological achievements: the volume of the lamp and driver system has been reduced by a factor of 10, exploiting a reduced ignition voltage as well as new optical concepts for the reflector. The optical performance of short-arc projection lamps can be improved dramatically: a dichroic coating on one half of the UHP burner is applied to focus all light into one hemisphere. This allows for extremely compact reflector systems and an improvement by 20-30% in light collection.
electronic imaging | 2004
Ulrich Weichmann; Hermann Giese; Ulrich Hechtfischer; Gero Heusler; Achim Gerhard Rolf Koerber; Holger Moench; Pavel Pekarski; Jens Pollmann-Retsch; Arnd Ritz
The past decade has seen a rapid development of projection systems. Projectors as small as only a few liters in size deliver several thousand screen lumens and are, with an efficacy of over 10 lm/W, the most efficient display systems realized today. This has been made possible by breakthroughs in lamp technology, particularly by the development of the UHP-lamp. This broadband light source with its outstanding brightness and lifetimes of over 10000 hours is ideal for projection applications. In this paper we want to describe three major technological trend lines in the development of UHP-lamps over the past decade: First, there is a trend towards brighter projectors, which is fostered by a brightness increase of the UHP-lamps. At the same time, projectors have seen a dramatic reduction in size, which has been made possible mostly by reducing lamp- and driver-size by even a factor of 10. This was only possible by the development of new ignition concepts as well as new optical designs of the reflector. And finally, UHP-lamps have seen quite some improvement in color rendering by using even higher pressures and shorter arc gaps. This allows for more colorful pictures and even more efficient projector designs.
SID Symposium Digest of Technical Papers | 2002
Holger Moench; Arnd Ritz
The optical performance of short arc projection lamps can be improved dramatically: A dichroic coating on one half of the UHP burner is applied to focus all light into one hemisphere. This allows for extremely compact reflector systems and an improvement by 20–30% in light collection.
SID Symposium Digest of Technical Papers | 2003
Holger Moench; Hermann Giese; Ulrich Hechtfischer; Gero Heusler; Achim Gerhard Rolf Koerber; Pavel Pekarski; Jens Pollmann-Retsch; Arnd Ritz; Ulrich Weichmann
Shorter arcs and higher gas pressures increase the collection efficiency and produce a spectrum which is ideal for video projection. Taking into account the physical lamp efficiency ideal arc lengths are given. New UHP products will realise 30% more light on the screen.
electronic imaging | 2003
Gero Heusler; Ulrich Hechtfischer; Achim Gerhard Rolf Koerber; Holger Moench; Pavel Pekarski; Jens Pollmann-Retsch; Arnd Ritz
Projection systems for large screens have made tremendous progress during the last years, both in terms of performance and size reduction. Improved UHP lamp systems made a major contribution to enable the new generation of projectors. The arc gap is reduced to 1 mm only and allows a high collection efficiency in the projector. At the same time the lamp wattage was increased. In this way, todays projectors can create high-quality XGA pictures with more than 3000 screen lumens using one single 200 W UHP-lamp. Such a projector reaches an efficiency of more than 10 screen lumens per watt electrical input power. The volume of lamp and driver has been reduced by one order of magnitude during the last six years. This was possible by recent progress that has been achieved on the ignition of the lamp. By using a UV-enhancer cavity in the lamp seal and an additional antenna the ignition voltage could be reduced from 20 kV to below 5 kV. This allows more compact drivers and is ideal for miniaturizing projectors. A new optical concept allows for extremely compact reflector systems: A dichroic coating applied to one half of the UHP burner focuses all light into one hemisphere. Additionally 20-30% more light can be collected in systems with high optical demands. Making use of both the reduced ignition voltage and the new optical concept a reduction of the volume of lamp and driver by a factor of 10 has been realized.
SID Symposium Digest of Technical Papers | 2007
Holger Moench; Uwe Mackens; Pavel Pekarski; Arnd Ritz; Tony Hermans; Griet S'Heeren; Wil Verbeek
Personal projectors are compact and affordable devices used for gaming, entertainment or photo projection. A very bright light source is at least as important as for standard front projectors. The new 50W Ujoy lamp system with 1mm arc enables efficient projection systems with a screen brightness of 200–300lm. Lower cooling requirements, the potential for battery operation and the low voltage input makes it the ideal source for this new category of projectors.
Proceedings of SPIE, the International Society for Optical Engineering | 2007
Holger Moench; Uwe Mackens; Pavel Pekarski; Arnd Ritz; Griet S'Heeren; Will Verbeek
Personal projection is a new way to use projectors for gaming, entertainment or photo projection. The requirements for this new category have been defined based on market research with focus groups. A screen brightness of 200-300lm out of compact and affordable devices is a must. In order to reach this performance a very bright light source is at least as important as for professional projectors. The new 50W Ujoy lamp system with 1mm arc enables efficient projection systems. Lower cooling requirements, the potential for battery operation and the low voltage input makes it the ideal source for this new category of projectors.
Journal of The Society for Information Display | 2007
Jens Pollmann-Retsch; Holger Mönch; Johannes Baier; Mark Carpaij; Carsten Deppe; Günther Hans Derra; Hermann Giese; Ulrich Hechtfischer; Achim Körber; Thomas Krücken; Uwe Mackens; Ulrich Niemann; Folke‐Charlotte Nörtemann; Pavel Pekarski; Arnd Ritz; Ulrich Weichmann
— Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home-TV market with considerable pace. Projectors as small as about one liter are nowadays able to deliver a screen flux of several thousand lumens and are, with a system efficacy of more than 10 lm/W, the most-efficient display system realized today. Because such highly efficient projectors employ microdisplays as light valves, short-arc lamps are a key component in realizing these properties. The introduction of the UHP-lamp system by Philips in 1995 can be identified as one of the key enablers for the commercial success of projection systems. The ultra-high-performance (UHP) lamp concept features outstanding arc luminance, a well-suited spectrum, long life, and excellent flux maintenance. For the first time, it combines a very-high-pressure mercury-discharge lamp having an extremely short and stable arc length with a regenerative chemical cycle that keeps the discharge walls free from blackening, leading to lifetimes of over 10,000 hours. In this review, the most important aspects of the UHP concept that enabled its success in the projection market are described, followed by a discussion of some recent additions to the UHP-product portfolio.