Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arne Brutschy is active.

Publication


Featured researches published by Arne Brutschy.


intelligent robots and systems | 2011

ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics

Carlo Pinciroli; Vito Trianni; Rehan O'Grady; Giovanni Pini; Arne Brutschy; Manuele Brambilla; Nithin Mathews; Eliseo Ferrante; Gianni A. Di Caro; Frederick Ducatelle; Timothy S. Stirling; Álvaro Gutiérrez; Luca Maria Gambardella; Marco Dorigo

We present ARGoS, a novel open source multi-robot simulator. The main design focus of ARGoS is the real-time simulation of large heterogeneous swarms of robots. Existing robot simulators obtain scalability by imposing limitations on their extensibility and on the accuracy of the robot models. By contrast, in ARGoS we pursue a deeply modular approach that allows the user both to easily add custom features and to allocate computational resources where needed by the experiment. A unique feature of ARGoS is the possibility to use multiple physics engines of different types and to assign them to different parts of the environment. Robots can migrate from one engine to another transparently. This feature enables entirely novel classes of optimizations to improve scalability and paves the way for a new approach to parallelism in robotics simulation. Results show that ARGoS can simulate about 10,000 simple wheeled robots 40% faster than real-time.


Swarm Intelligence | 2014

AutoMoDe: A novel approach to the automatic design of control software for robot swarms

Gianpiero Francesca; Manuele Brambilla; Arne Brutschy; Vito Trianni; Mauro Birattari

We introduce AutoMoDe: a novel approach to the automatic design of control software for robot swarms. The core idea in AutoMoDe recalls the approach commonly adopted in machine learning for dealing with the bias–variance tradedoff: to obtain suitably general solutions with low variance, an appropriate design bias is injected. AutoMoDe produces robot control software by selecting, instantiating, and combining preexisting parametric modules—the injected bias. The resulting control software is a probabilistic finite state machine in which the topology, the transition rules and the values of the parameters are obtained automatically via an optimization process that maximizes a task-specific objective function. As a proof of concept, we define AutoMoDe-Vanilla, which is a specialization of AutoMoDe for the e-puck robot. We use AutoMoDe-Vanilla to design the robot control software for two different tasks: aggregation and foraging. The results show that the control software produced by AutoMoDe-Vanilla (i) yields good results, (ii) appears to be robust to the so called reality gap, and (iii) is naturally human-readable.


Autonomous Agents and Multi-Agent Systems | 2014

Self-organized task allocation to sequentially interdependent tasks in swarm robotics

Arne Brutschy; Giovanni Pini; Carlo Pinciroli; Mauro Birattari; Marco Dorigo

In this article we present a self-organized method for allocating the individuals of a robot swarm to tasks that are sequentially interdependent. Tasks that are sequentially interdependent are common in natural and artificial systems. The proposed method does neither rely on global knowledge nor centralized components. Moreover, it does not require the robots to communicate. The method is based on the delay experienced by the robots working on one subtask when waiting for input from another subtask. We explore the capabilities of the method in different simulated environments. Additionally, we evaluate the method in a proof-of-concept experiment using real robots. We show that the method allows a swarm to reach a near-optimal allocation in the studied environments, can easily be transferred to a real robot setting, and is adaptive to changes in the properties of the tasks such as their duration. Finally, we show that the ideal setting of the parameters of the method does not depend on the properties of the environment.


Swarm Intelligence | 2011

Task partitioning in swarms of robots: an adaptive method for strategy selection

Giovanni Pini; Arne Brutschy; Marco Frison; Andrea Roli; Marco Dorigo; Mauro Birattari

Task partitioning is the decomposition of a task into two or more sub-tasks that can be tackled separately. Task partitioning can be observed in many species of social insects, as it is often an advantageous way of organizing the work of a group of individuals. Potential advantages of task partitioning are, among others: reduction of interference between workers, exploitation of individuals’ skills and specializations, energy efficiency, and higher parallelism. Even though swarms of robots can benefit from task partitioning in the same way as social insects do, only few works in swarm robotics are dedicated to this subject. In this paper, we study the case in which a swarm of robots has to tackle a task that can be partitioned into a sequence of two sub-tasks. We propose a method that allows the individual robots in the swarm to decide whether to partition the given task or not. The method is self-organized, relies on the experience of each individual, and does not require explicit communication between robots. We evaluate the method in simulation experiments, using foraging as testbed. We study cases in which task partitioning is preferable and cases in which it is not. We show that the proposed method leads to good performance of the swarm in both cases, by employing task partitioning only when it is advantageous. We also show that the swarm is able to react to changes in the environmental conditions by adapting the behavior on-line. Scalability experiments show that the proposed method performs well across all the tested group sizes.


Adaptive Behavior | 2013

Autonomous task partitioning in robot foraging: an approach based on cost estimation

Giovanni Pini; Arne Brutschy; Carlo Pinciroli; Marco Dorigo; Mauro Birattari

We propose an approach for autonomous task partitioning in swarms of foraging robots. Task partitioning is the process of decomposing tasks into sub-tasks. Task partitioning impacts tasks execution and associated costs. Our approach is characterized by the use of a cost function, mapping the size of sub-tasks to the overall task cost. The robots model the cost function and use the model to select sub-tasks to perform, aiming to minimize costs. Our approach separates the task partitioning process from task-specific actions and it does not require a priori assumptions to be made about the best partitioning strategy to employ. We study a foraging scenario in which object transportation is performed by different robots, each moving objects for a limited distance. The robots autonomously decide the distance traveled on the basis of our approach. The robots use odometry for navigational purposes; we show that task partitioning reduces the impact of odometry errors and improves performance. We validate our approach using simulation-based experiments. We study how the swarm partitions transportation under a number of experimental conditions characterized by different levels of odometry accuracy, size of the environment and the swarm, and total transportation distance. Our approach leads to partitioning solutions that are appropriate for each condition.


IEEE Transactions on Systems, Man, and Cybernetics | 2016

The

Alexander Scheidler; Arne Brutschy; Eliseo Ferrante; Marco Dorigo

In this paper, we propose a collective decision-making method for swarms of robots. The method enables a robot swarm to select, from a set of possible actions, the one that has the fastest mean execution time. By means of positive feedback the method achieves consensus on the fastest action. The novelty of our method is that it allows robots to collectively find consensus on the fastest action without measuring explicitly the execution times of all available actions. We study two analytical models of the decision-making method in order to understand the dynamics of the consensus formation process. Moreover, we verify the applicability of the method in a real swarm robotics scenario. To this end, we conduct three sets of experiments that show that a robotic swarm can collectively select the shortest of two paths. Finally, we use a Monte Carlo simulation model to study and predict the influence of different parameters on the method.


ACM Transactions on Autonomous and Adaptive Systems | 2015

{k}

Manuele Brambilla; Arne Brutschy; Marco Dorigo; Mauro Birattari

In this article, we present property-driven design, a novel top-down design method for robot swarms based on prescriptive modeling and model checking. Traditionally, robot swarms have been developed using a code-and-fix approach: in a bottom-up iterative process, the developer tests and improves the individual behaviors of the robots until the desired collective behavior is obtained. The code-and-fix approach is unstructured, and the quality of the obtained swarm depends completely on the expertise and ingenuity of the developer who has little scientific or technical support in his activity. Property-driven design aims at providing such scientific and technical support, with many advantages compared to the traditional unstructured approach. Property-driven design is composed of four phases: first, the developer formally specifies the requirements of the robot swarm by stating its desired properties; second, the developer creates a prescriptive model of the swarm and uses model checking to verify that this prescriptive model satisfies the desired properties; third, using the prescriptive model as a blueprint, the developer implements a simulated version of the desired robot swarm and validates the prescriptive model developed in the previous step; fourth, the developer implements the desired robot swarm and validates the previous steps. We demonstrate property-driven design using two case studies: aggregation and foraging.


Lecture notes in electrical engineering | 2011

-Unanimity Rule for Self-Organized Decision-Making in Swarms of Robots

Giovanni Pini; Arne Brutschy; Mauro Birattari; Marco Dorigo

The performance of large groups of robots is often limited by a commonly shared resource. This effect, termed interference, can have a large impact on robotic swarms. This article studies the issue of interference in a swarm of robots working on a harvesting task. The environment of the robots is spatially constrained, i.e., there is a commonly shared resource, the nest, which limits the group’s performance when used without any arbitration mechanism. The article studies the use of task partitioning for reducing concurrent accesses to the resource, and therefore limiting the impact of interference on the group’s performance. In our study, we spatially partition the environment into two subparts, thereby partitioning the corresponding harvesting task as well. We employ a simple method to allocate individuals to the partitions. The approach is empirically studied both in an environment with a narrow nest area and an environment without this constraint. The results of the task partitioning strategy are analyzed and compared to the case in which task partitioning is not employed.


Swarm Intelligence | 2015

Property-Driven Design for Robot Swarms: A Design Method Based on Prescriptive Modeling and Model Checking

Arne Brutschy; Lorenzo Garattoni; Manuele Brambilla; Gianpiero Francesca; Giovanni Pini; Marco Dorigo; Mauro Birattari

Research in swarm robotics focuses mostly on how robots interact and cooperate to perform tasks, rather than on the details of task execution. As a consequence, researchers often consider abstract tasks in their experimental work. For example, foraging is often studied without physically handling objects: the retrieval of an object from a source to a destination is abstracted into a trip between the two locations—no object is physically transported. Despite being commonly used, so far task abstraction has only been implemented in an ad hoc fashion. In this paper, we propose a new approach to abstracting complex tasks in swarm robotics research. This approach is based on a physical device called the “task abstraction module” (TAM) that abstracts single-robot tasks to be performed by an e-puck robot. A complex multi-robot task can be abstracted using a group of TAMs by first modeling the task as the set of its constituent single-robot subtasks and then abstracting each subtask with a TAM. We present a collection of tools for modeling complex tasks, and a framework for controlling a group of TAMs such that the behavior of the group implements the model of the task. The TAM enables research on cooperative behaviors and complex tasks with simple, cost-effective robots such as the e-puck—research that would be difficult and costly to conduct using specialized robots or ad hoc task abstraction. We demonstrate how to abstract a complex task with multiple TAMs in an example scenario involving a swarm of e-puck robots.


international conference on swarm intelligence | 2014

Task Partitioning in Swarms of Robots: Reducing Performance Losses Due to Interference at Shared Resources

Gianpiero Francesca; Manuele Brambilla; Arne Brutschy; Lorenzo Garattoni; Roman Miletitch; Gaëtan Podevijn; Andreagiovanni Reina; Touraj Soleymani; Mattia Salvaro; Carlo Pinciroli; Vito Trianni; Mauro Birattari

We present an experiment in automatic design of robot swarms. For the first time in the swarm robotics literature, we perform an objective comparison of multiple design methods: we compare swarms designed by two automatic methods—vanilla and EvoStick—with swarms manually designed by human experts. vanilla and EvoStick have been previously published and tested on two tasks. To evaluate their generality, in this paper we test them without any modification on five new tasks. Besides confirming that vanilla is effective, our results provide new insight into the design of robot swarms. In particular, our results indicate that, at least under the adopted experimental protocol, not only does automatic design suffer from the reality gap, but also manual design. The results also show that both manual and automatic methods benefit from bias injection. In this work, bias injection consists in restricting the design search space to the combinations of pre-existing modules. The results indicate that bias injection helps to overcome the reality gap, yielding better performing robot swarms.

Collaboration


Dive into the Arne Brutschy's collaboration.

Top Co-Authors

Avatar

Mauro Birattari

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Marco Dorigo

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Giovanni Pini

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Manuele Brambilla

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Carlo Pinciroli

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Gianpiero Francesca

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Vito Trianni

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eliseo Ferrante

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Garattoni

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge