Eliseo Ferrante
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eliseo Ferrante.
intelligent robots and systems | 2011
Carlo Pinciroli; Vito Trianni; Rehan O'Grady; Giovanni Pini; Arne Brutschy; Manuele Brambilla; Nithin Mathews; Eliseo Ferrante; Gianni A. Di Caro; Frederick Ducatelle; Timothy S. Stirling; Álvaro Gutiérrez; Luca Maria Gambardella; Marco Dorigo
We present ARGoS, a novel open source multi-robot simulator. The main design focus of ARGoS is the real-time simulation of large heterogeneous swarms of robots. Existing robot simulators obtain scalability by imposing limitations on their extensibility and on the accuracy of the robot models. By contrast, in ARGoS we pursue a deeply modular approach that allows the user both to easily add custom features and to allocate computational resources where needed by the experiment. A unique feature of ARGoS is the possibility to use multiple physics engines of different types and to assign them to different parts of the environment. Robots can migrate from one engine to another transparently. This feature enables entirely novel classes of optimizations to improve scalability and paves the way for a new approach to parallelism in robotics simulation. Results show that ARGoS can simulate about 10,000 simple wheeled robots 40% faster than real-time.
Swarm Intelligence | 2011
Marco Antonio Montes de Oca; Eliseo Ferrante; Alexander Scheidler; Carlo Pinciroli; Mauro Birattari; Marco Dorigo
Collective decision-making is a process whereby the members of a group decide on a course of action by consensus. In this paper, we propose a collective decision-making mechanism for robot swarms deployed in scenarios in which robots can choose between two actions that have the same effects but that have different execution times. The proposed mechanism allows a swarm composed of robots with no explicit knowledge about the difference in execution times between the two actions to choose the one with the shorter execution time. We use an opinion formation model that captures important elements of the scenarios in which the proposed mechanism can be used in order to predict the system’s behavior. The model predicts that when the two actions have different average execution times, the swarm chooses with high probability the action with the shorter average execution time. We validate the model’s predictions through a swarm robotics experiment in which robot teams must choose one of two paths of different length that connect two locations. Thanks to the proposed mechanism, a swarm made of robot teams that do not measure time or distance is able to choose the shorter path.
Adaptive Behavior | 2012
Eliseo Ferrante; Ali Emre Turgut; Cristián Huepe; Alessandro Stranieri; Carlo Pinciroli; Marco Dorigo
In flocking, a swarm of robots moves cohesively in a common direction. Traditionally, flocking is realized using two main control rules: proximal control, which controls the cohesion of the swarm using local range-and bearing information about neighboring robots; and alignment control, which allows the robots to align in a common direction and uses more elaborate sensing mechanisms to obtain the orientation of neighboring robots. So far, limited attention has been given to motion control, used to translate the output of these two control rules into robot motion. In this paper, we propose a novel motion control method: magnitude-dependent motion control (MDMC). Through simulations and real robot experiments, we show that, with MDMC, flocking in a random direction is possible without the need for alignment control and for robots having a preferred direction of travel. MDMC has the advantage to be implementable on very simple robots that lack the capability to detect the orientation of their neighbors. In addition, we introduce a small proportion of robots informed about a desired direction of travel. We compare MDMC with a motion control method used in previous robotics literature, which we call magnitude-independent motion control (MIMC), and we show that the swarms can travel longer distances in the desired direction when using MDMC instead of MIMC. Finally, we systematically study flocking under various conditions: with or without alignment control, with or without informed robots, with MDMC or with MIMC.
PLOS Computational Biology | 2015
Eliseo Ferrante; Ali Emre Turgut; Edgar A. Duéñez-Guzmán; Marco Dorigo; Tom Wenseleers
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.
parallel problem solving from nature | 2010
Eliseo Ferrante; Ali Emre Turgut; Nithin Mathews; Mauro Birattari; Marco Dorigo
We propose a novel communication strategy inspired by explicit signaling mechanisms seen in vertebrates, in order to improve performance of self-organized flocking for a swarm of mobile robots. The communication strategy is used to make the robots match each others headings. The task of the robots is to coordinately move towards a common goal direction, which might stay fixed or change over time. We perform simulation-based experiments in which we evaluate the accuracy of flocking with respect to a given goal direction. In our settings, only some of the robots are informed about the goal direction. Experiments are conducted in stationary and non-stationary environments. In the stationary environment, the goal direction and the informed robots do not change during the experiment. In the non-stationary environment, the goal direction and the informed robots are changed over time. In both environments, the proposed strategy scales well with respect to the swarm size and is robust with respect to noise.
IEEE Transactions on Systems, Man, and Cybernetics | 2016
Alexander Scheidler; Arne Brutschy; Eliseo Ferrante; Marco Dorigo
In this paper, we propose a collective decision-making method for swarms of robots. The method enables a robot swarm to select, from a set of possible actions, the one that has the fastest mean execution time. By means of positive feedback the method achieves consensus on the fastest action. The novelty of our method is that it allows robots to collectively find consensus on the fastest action without measuring explicitly the execution times of all available actions. We study two analytical models of the decision-making method in order to understand the dynamics of the consensus formation process. Moreover, we verify the applicability of the method in a real swarm robotics scenario. To this end, we conduct three sets of experiments that show that a robotic swarm can collectively select the shortest of two paths. Finally, we use a Monte Carlo simulation model to study and predict the influence of different parameters on the method.
Natural Computing | 2014
Eliseo Ferrante; Ali Emre Turgut; Alessandro Stranieri; Carlo Pinciroli; Mauro Birattari; Marco Dorigo
We propose a self-adaptive communication strategy for controlling the heading direction of a swarm of mobile robots during flocking. We consider the problem where a small group of informed robots has to guide a large swarm along a desired direction. We consider three versions of this problem: one where the desired direction is fixed; one where the desired direction changes over time; one where a second group of informed robots has information about a second desired direction that conflicts with the first one, but has higher priority. The goal of the swarm is to follow, at all times, the desired direction that has the highest priority and, at the same time, to keep cohesion. The proposed strategy allows the informed robots to guide the swarm when only one desired direction is present. Additionally, a self-adaptation mechanism allows the robots to indirectly sense the second desired direction, and makes the swarm follow it. In experiments with both simulated and real robots, we evaluate how well the swarm tracks the desired direction and how well it maintains cohesion. We show that, using self-adaptive communication, the swarm is able to follow the desired direction with the highest priority at all times without splitting.
Frontiers in Robotics and AI | 2016
Heiko Hamann; Yara Khaluf; Jean Botev; Mohammad Divband Soorati; Eliseo Ferrante; Oliver Kosak; Jean-Marc Montanier; Sanaz Mostaghim; Richard Redpath; Jonathan Timmis; Frank Veenstra; Mostafa Wahby; Aleš Zamuda
Hybrid societies are self-organizing, collective systems, which are composed of different components, for example, natural and artificial parts (bio-hybrid) or human beings interacting with and through technical systems (socio-technical). Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area.
genetic and evolutionary computation conference | 2013
Eliseo Ferrante; Edgar A. Duéñez-Guzmán; Ali Emre Turgut; Tom Wenseleers
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to modify, and to tease apart the inherent principles that lead to the desired collective behavior. In contrast, our representation is based on completely readable and analyzable individual-level rules that lead to a desired collective behavior. The core of our method is a grammar that can generate a rich variety of collective behaviors. We test GESwarm by evolving a foraging strategy using a realistic swarm robotics simulator. We then systematically compare the evolved collective behavior against an hand-coded one for performance, scalability and flexibility, showing that collective behaviors evolved with GESwarm can outperform the hand-coded one.
international conference on swarm intelligence | 2010
Marco Antonio Montes de Oca; Eliseo Ferrante; Nithin Mathews; Mauro Birattari; Marco Dorigo
In this paper, we study how an opinion dynamics model can be the core of a collective decision-making mechanism for swarm robotics. Our main result is that when opinions represent action choices, the opinion associated with the action that is the fastest to execute spreads in the population. Moreover, the spread of the best choice happens even when only a minority is initially advocating for it. The key elements involved in this process are consensus building and positive feedback. A foraging task that involves collective transport is used to illustrate the potential of the proposed approach.