Arne K. D. Schmidt
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arne K. D. Schmidt.
PLOS ONE | 2011
Arne K. D. Schmidt; Heiner Römer
Background Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured. Principal Findings Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals. Conclusions Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.
The Journal of Experimental Biology | 2011
Arne K. D. Schmidt; Klaus Riede; Heiner Römer
SUMMARY Because of call frequency overlap and masking interference, the airborne sound channel represents a limited resource for communication in a species-rich cricket community like the tropical rainforest. Here we studied the frequency tuning of an auditory neuron mediating phonotaxis in the rainforest cricket Paroecanthus podagrosus, suffering from strong competition, in comparison with the same homologous neuron in two species of European field crickets, where such competition does not exist. As predicted, the rainforest species exhibited a more selective tuning compared with the European counterparts. The filter reduced background nocturnal noise levels by 26 dB, compared with only 16 and 10 dB in the two European species. We also quantified the performance of the sensory filter under the different filter regimes by examining the representation of the species-specific amplitude modulation of the male calling song, when embedded in background noise. Again, the filter of the rainforest cricket performed significantly better in terms of representing this important signal parameter. The neuronal representation of the calling song pattern within receivers was maintained for a wide range of signal-to-noise ratios because of the more sharply tuned sensory system and selective attention mechanisms. Finally, the rainforest cricket also showed an almost perfect match between the filter for sensitivity and the peripheral filter for directional hearing, in contrast to its European counterparts. We discuss the consequences of these adaptations for intraspecific acoustic communication and reproductive isolation between species.
Frontiers in Zoology | 2013
Arne K. D. Schmidt; Heiner Römer
BackgroundSound localization in small insects can be a challenging task due to physical constraints in deriving sufficiently large interaural intensity differences (IIDs) between both ears. In crickets, sound source localization is achieved by a complex type of pressure difference receiver consisting of four potential sound inputs. Sound acts on the external side of two tympana but additionally reaches the internal tympanal surface via two external sound entrances. Conduction of internal sound is realized by the anatomical arrangement of connecting trachea. A key structure is a trachea coupling both ears which is characterized by an enlarged part in its midline (i.e., the acoustic vesicle) accompanied with a thin membrane (septum). This facilitates directional sensitivity despite an unfavorable relationship between wavelength of sound and body size. Here we studied the morphological differences of the acoustic tracheal system in 40 cricket species (Gryllidae, Mogoplistidae) and species of outgroup taxa (Gryllotalpidae, Rhaphidophoridae, Gryllacrididae) of the suborder Ensifera comprising hearing and non hearing species.ResultsWe found a surprisingly high variation of acoustic tracheal systems and almost all investigated species using intraspecific acoustic communication were characterized by an acoustic vesicle associated with a medial septum. The relative size of the acoustic vesicle - a structure most crucial for deriving high IIDs - implies an important role for sound localization. Most remarkable in this respect was the size difference of the acoustic vesicle between species; those with a more unfavorable ratio of body size to sound wavelength tend to exhibit a larger acoustic vesicle. On the other hand, secondary loss of acoustic signaling was nearly exclusively associated with the absence of both acoustic vesicle and septum.ConclusionThe high diversity of acoustic tracheal morphology observed between species might reflect different steps in the evolution of the pressure difference receiver; with a precursor structure already present in ancestral non-hearing species. In addition, morphological transitions of the acoustic vesicle suggest a possible adaptive role for the generation of binaural directional cues.
Biological Cybernetics | 2016
Heiner Römer; Arne K. D. Schmidt
Compared to all other hearing animals, insects are the smallest ones, both in absolute terms and in relation to the wavelength of most biologically relevant sounds. The ears of insects can be located at almost any possible body part, such as wings, legs, mouthparts, thorax or abdomen. The interaural distances are generally so small that cues for directional hearing such as interaural time and intensity differences (IITs and IIDs) are also incredibly small, so that the small body size should be a strong constraint for directional hearing. Yet, when tested in behavioral essays for the precision of sound source localization, some species demonstrate hyperacuity in directional hearing and can track a sound source deviating from the midline by only
The Journal of Experimental Biology | 2016
Arne K. D. Schmidt; Heiner Römer
Scientific Reports | 2017
Erik S. Schneider; Heinrich Römer; Tony Robillard; Arne K. D. Schmidt
1^{\circ }
Behavioral Ecology | 2013
Arne K. D. Schmidt; Heiner Römer; Klaus Riede
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2014
Stefan Hirtenlehner; Heiner Römer; Arne K. D. Schmidt
1∘–
The Journal of Experimental Biology | 2017
Bettina Erregger; Helmut Kovac; Anton Stabentheiner; Manfred Hartbauer; Heinrich Römer; Arne K. D. Schmidt
Behavioral Ecology | 2016
Arne K. D. Schmidt; Klaus Riede; Heiner Römer
2^{\circ }