Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manfred Hartbauer is active.

Publication


Featured researches published by Manfred Hartbauer.


PLOS ONE | 2010

The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication

Heiner Römer; Alexander Lang; Manfred Hartbauer

Background Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve. Methodology/Principal Findings We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO2-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insects favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication. Conclusions/Significance Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions.


PLOS ONE | 2008

Matched Filters, Mate Choice and the Evolution of Sexually Selected Traits

Konstantinos Kostarakos; Manfred Hartbauer; Heiner Römer

Background Fundamental for understanding the evolution of communication systems is both the variation in a signal and how this affects the behavior of receivers, as well as variation in preference functions of receivers, and how this affects the variability of the signal. However, individual differences in female preference functions and their proximate causation have rarely been studied. Methodology/Principal Findings Calling songs of male field crickets represent secondary sexual characters and are subject to sexual selection by female choice. Following predictions from the “matched filter hypothesis” we studied the tuning of an identified interneuron in a field cricket, known for its function in phonotaxis, and correlated this with the preference of the same females in two-choice trials. Females vary in their neuronal frequency tuning, which strongly predicts the preference in a choice situation between two songs differing in carrier frequency. A second “matched filter” exists in directional hearing, where reliable cues for sound localization occur only in a narrow frequency range. There is a strong correlation between the directional tuning and the behavioural preference in no-choice tests. This second “matched filter” also varies widely in females, and surprisingly, differs on average by 400 Hz from the neuronal frequency tuning. Conclusions/Significance Our findings on the mismatch of the two “matched filters” would suggest that the difference in these two filters appears to be caused by their evolutionary history, and the different trade-offs which exist between sound emission, transmission and detection, as well as directional hearing under specific ecological settings. The mismatched filter situation may ultimately explain the maintenance of considerable variation in the carrier frequency of the male signal despite stabilizing selection.


Behavioral Ecology and Sociobiology | 2011

Behavioral evidence for eavesdropping on prey song in two Palearctic sibling bat species

Patricia L. Jones; Rachel A. Page; Manfred Hartbauer; Björn M. Siemers

Eavesdropping on prey communication signals has never before been reported for a Palearctic bat species. In this study, we investigated whether lesser and greater mouse-eared bats, Myotis blythii oxygnathus and Myotis myotis, find tettigoniid bushcrickets (Tettigoniidae) by eavesdropping on their mate-attraction song. Tettigoniids are known to be the most important prey item for M. blythii oxygnathus, while carabid beetles and other epigaeic arthropods are the most important prey for its sibling species, M. myotis, in many places in Europe. M. myotis locates walking beetles by listening for their rustling sounds. We compared these two species’ response to four acoustic prey cues: calling song of two tettigoniid species, the rustling sound made by walking carabid beetles, and a control tone. Individuals of both bat species attacked the speaker playing tettigoniid song, which clearly indicates that both species eavesdrop on prey-generated advertisement signals. There were, however, species differences in response. M. blythii oxygnathus exhibited stronger predatory responses to the calling song of two species of tettigoniid than to the beetle rustling sound or the control. M. myotis, in contrast, exhibited stronger predatory responses to the beetle rustling and to one tettigoniid species but not the other tettigoniid or the control. Our study (1) for the first time demonstrates eavesdropping on prey communication signals for Palearctic bats and (2) gives preliminary evidence for sensory niche partitioning between these two sympatric sibling bat species.


PLOS ONE | 2010

Collective defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae) against natural enemies.

Manfred Hartbauer

The prevalent way aphids accomplish colony defense against natural enemies is a mutualistic relationship with ants or the occurrence of a specialised soldier caste typcial for eusocial aphids, or even both. Despite a group-living life style of those aphid species lacking these defense lines, communal defense against natural predators has not yet been observed there. Individuals of Aphis nerii (Oleander aphid) and Uroleucon hypochoeridis, an aphid species feeding on Hypochoeris radicata (hairy cats ear), show a behavioral response to visual stimulation in the form of spinning or twitching, which is often accompanied by coordinated kicks executed with hind legs. Interestingly, this behaviour is highly synchronized among members of a colony and repetitive visual stimulation caused strong habituation. Observations of natural aphid colonies revealed that a collective twitching and kicking response (CTKR) was frequently evoked during oviposition attempts of the parasitoid wasp Aphidius colemani and during attacks of aphidophagous larvae. CTKR effectively interrupted oviposition attempts of this parasitoid wasp and even repelled this parasitoid from colonies after evoking consecutive CTKRs. In contrast, solitary feeding A. nerii individuals were not able to successfully repel this parasitoid wasp. In addition, CTKR was also evoked through gentle substrate vibrations. Laser vibrometry of the substrate revealed twitching-associated vibrations that form a train of sharp acceleration peaks in the course of a CTKR. This suggests that visual signals in combination with twitching-related substrate vibrations may play an important role in synchronising defense among members of a colony. In both aphid species collective defense in encounters with different natural enemies was executed in a stereotypical way and was similar to CTKR evoked through visual stimulation. This cooperative defense behavior provides an example of a surprising sociality that can be found in some aphid species that are not expected to be social at all.


The Journal of Experimental Biology | 2013

Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

M. E. Siegert; Heiner Römer; Manfred Hartbauer

SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’.


Royal Society Open Science | 2014

Competition and cooperation in a synchronous bushcricket chorus.

Manfred Hartbauer; L. Haitzinger; M. Kainz; Heiner Römer

Synchronous signalling within choruses of the same species either emerges from cooperation or competition. In our study on the katydid Mecopoda elongata, we aim to identify mechanisms driving evolution towards synchrony. The increase of signal amplitude owing to synchronous signalling and the preservation of a conspecific signal period may represent cooperative mechanisms, whereas chorus synchrony may also result from the preference of females for leading signals and the resulting competition for the leader role. We recorded the timing of signals and the resulting communal signal amplitudes in small choruses and performed female choice experiments to identify such mechanisms. Males frequently timed their signals either as leader or follower with an average time lag of about 70 ms. Females selected males in such choruses on the basis of signal order and signal duration. Two-choice experiments revealed a time lag of only 70 ms to bias mate choice in favour of the leader. Furthermore, a song model with a conspecific signal period of 2 s was more attractive than a song model with an irregular or longer and shorter than average signal period. Owing to a high degree of overlap and plasticity of signals produced in ‘four male choruses’, peak and root mean square amplitudes increased by about 7 dB relative to lone singers. Modelling active space of synchronous males and solo singing males revealed a strongly increased broadcast area of synchronous signallers, but a slightly reduced per capita mating possibility compared with lone singers. These results suggest a strong leader preference of females as the ultimate causation of inter-male competition for timing signals as leader. The emerging synchrony increases the amplitude of signals produced in a chorus and has the potential to compensate a reduction of mating advantage in a chorus. We discuss a possible fitness benefit of males gained through a beacon effect and the possibility that signalling as follower is stabilized via natural selection.


The Journal of Experimental Biology | 2011

Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera, Tettigoniidae)

M. E. Siegert; Heiner Römer; Rosli Hashim; Manfred Hartbauer

SUMMARY Acoustically interacting males of the tropical katydid Mecopoda elongata synchronize their chirps imperfectly, so that one male calls consistently earlier in time than the other. In choice situations, females prefer the leader signal, and it has been suggested that a neuronal mechanism based on directional hearing may be responsible for the asymmetric, stronger representation of the leader signal in receivers. Here, we investigated the potential mechanism in a pair of interneurons (TN1 neuron) of the afferent auditory pathway, known for its contralateral inhibitory input in directional hearing. In this interneuron, conspecific signals are reliably encoded under natural conditions, despite high background noise levels. Unilateral presentations of a conspecific chirp elicited a TN1 response where each suprathreshold syllable in the chirp was reliably copied in a phase-locked fashion. Two identical chirps broadcast with a 180 deg spatial separation resulted in a strong suppression of the response to the follower signal, when the time delay was 20 ms or more. Muting the ear on the leader side fully restored the response to the follower signal compared with unilateral controls. Time–intensity trading experiments, in which the disadvantage of the follower signal was traded against higher sound pressure levels, demonstrated the dominating influence of signal timing on the TN1 response, and this was especially pronounced at higher sound levels of the leader. These results support the hypothesis that the female preference for leader signals in M. elongata is the outcome of a sensory mechanism that originally evolved for directional hearing.


The Journal of Experimental Biology | 2010

Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels

Manfred Hartbauer; Gerald Radspieler; Heiner Römer

SUMMARY Katydid receivers face the problem of detecting behaviourally relevant predatory cues from echolocating bats in the same frequency domain as their own conspecific mating signals. We therefore tested the hypothesis that katydids are able to detect the presence of insectivorous bats in spike discharges at early stages of nervous processing in the auditory pathway by using the temporal details characteristic for responses to echolocation sequences. Spike activity was recorded from an identified nerve cell (omega neuron) under both laboratory and field conditions. In the laboratory, the preparation was stimulated with sequences of bat calls at different repetition rates typical for the guild of insectivorous bats, in the presence of background noise. The omega cell fired brief high-frequency bursts of action potentials in response to each bat sound pulse. Repetition rates of 18 and 24 Hz of these pulses resulted in a suppression of activity resulting from background noise, thus facilitating the detection of bat calls. The spike activity typical for responses to bat echolocation contrasts to responses to background noise, producing different distributions of inter-spike intervals. This allowed development of a ‘neuronal bat detector’ algorithm, optimized to detect responses to bats in afferent spike trains. The algorithm was applied to more than 24 hours of outdoor omega-recordings performed either at a rainforest clearing with high bat activity or in rainforest understory, where bat activity was low. In 95% of cases, the algorithm detected a bat reliably, even under high background noise, and correctly rejected responses when an electronic bat detector showed no response.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2012

Signalling plasticity and energy saving in a tropical bushcricket

Manfred Hartbauer; Anton Stabentheiner; Heiner Römer

Males of the tropical bushcricket Mecopoda elongata synchronize their acoustic advertisement signals (chirps) in interactions with other males. However, synchrony is not perfect and distinct leader and follower roles are often maintained. In entrainment experiments in which conspecific signals were presented at various rates, chirps displayed as follower showed notable signal plasticity. Follower chirps were shortened by reducing the number and duration of syllables, especially those of low and medium amplitude. The degree of shortening depended on the time delay between leader and follower signals and the sound level of the entraining stimulus. The same signal plasticity was evident in male duets, with the effect that the last syllables of highest amplitude overlapped more strongly. Respiratory measurements showed that solo singing males producing higher chirp rates suffered from higher metabolic costs compared to males singing at lower rates. In contrast, respiratory rate was rather constant during a synchronous entrainment to a conspecific signal repeated at various rates. This allowed males to maintain a steady duty cycle, associated with a constant metabolic rate. Results are discussed with respect to the preference for leader signals in females and the possible benefits males may gain by overlapping their follower signals in a chorus.


PLOS ONE | 2010

The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats

Manfred Hartbauer; Elisabeth Ofner; Viktoria Grossauer; Bjoern M. Siemers

Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats.

Collaboration


Dive into the Manfred Hartbauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge