Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnold H. Zea is active.

Publication


Featured researches published by Arnold H. Zea.


Clinical Cancer Research | 2009

Sunitinib Mediates Reversal of Myeloid-Derived Suppressor Cell Accumulation in Renal Cell Carcinoma Patients

Jennifer S. Ko; Arnold H. Zea; Brian I. Rini; Joanna Ireland; Paul Elson; Peter A. Cohen; Ali Reza Golshayan; Patricia Rayman; Laura S. Wood; Jorge A. Garcia; Robert Dreicer; Ronald M. Bukowski; James H. Finke

Purpose: Immune dysfunction reported in renal cell carcinoma (RCC) patients may contribute to tumor progression. Myeloid-derived suppressor cells (MDSC) represent one mechanism by which tumors induce T-cell suppression. Several factors pivotal to the accumulation of MDSC are targeted by the tyrosine kinase inhibitor, sunitinib. The effect of sunitinib on MDSC-mediated immunosuppression in RCC patients has been investigated. Experimental Design: Patient peripheral blood levels of MDSC and regulatory T-cell (Treg) and T-cell production of IFN-γ were evaluated before and after sunitinib treatment. Correlations between MDSC and Treg normalization as well as T-cell production of IFN-γ were examined. The in vitro effect of sunitinib on patient MDSC was evaluated. Results: Metastatic RCC patients had elevated levels of CD33+HLA-DR− and CD15+CD14− MDSC, and these were partially overlapping populations. Treatment with sunitinib resulted in significant reduction in MDSC measured by several criteria. Sunitinib-mediated reduction in MDSC was correlated with reversal of type 1 T-cell suppression, an effect that could be reproduced by the depletion of MDSC in vitro. MDSC reduction in response to sunitinib correlated with a reversal of CD3+CD4+CD25hiFoxp3+ Treg cell elevation. No correlation existed between a change in tumor burden and a change in MDSC, Treg, or T-cell production of IFN-γ. In vitro addition of sunitinib reduced MDSC viability and suppressive effect when used at ≥1.0 μg/mL. Sunitinib did not induce MDSC maturation in vitro. Conclusions: Sunitinib-based therapy has the potential to modulate antitumor immunity by reversing MDSC-mediated tumor-induced immunosuppression.


Frontiers in Cellular and Infection Microbiology | 2014

Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns.

Maria E. Lewis; Robert J. Belland; Yasser M. AbdelRahman; Wandy L. Beatty; Ashok Aiyar; Arnold H. Zea; Sheila Greene; Luis Marrero; Lyndsey R. Buckner; David J. Tate; Chris L. McGowin; Pamela A. Kozlowski; Michelle O'Brien; Rebecca Lillis; David H. Martin; Alison J. Quayle

In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence.


Infection and Immunity | 2011

Inhibition of indoleamine 2,3-dioxygenase activity by levo-1-methyl tryptophan blocks gamma interferon-induced chlamydia trachomatis persistence in human epithelial cells

Joyce S. A. Ibana; Robert J. Belland; Arnold H. Zea; Danny J. Schust; Takeshi Nagamatsu; Yasser M. AbdelRahman; David J. Tate; Wandy L. Beatty; Ashok Aiyar; Alison J. Quayle

ABSTRACT Gamma interferon (IFN-γ) induces expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) in human epithelial cells, the permissive cells for the obligate intracellular bacterium Chlamydia trachomatis. IDO1 depletes tryptophan by catabolizing it to kynurenine with consequences for C. trachomatis, which is a tryptophan auxotroph. In vitro studies reveal that tryptophan depletion can result in the formation of persistent (viable but noncultivable) chlamydial forms. Here, we tested the effects of the IDO1 inhibitor, levo-1-methyl-tryptophan (L-1MT), on IFN-γ-induced C. trachomatis persistence. We found that addition of 0.2 mM L-1MT to IFN-γ-exposed infected HeLa cell cultures restricted IDO1 activity at the mid-stage (20 h postinfection [hpi]) of the chlamydial developmental cycle. This delayed tryptophan depletion until the late stage (38 hpi) of the cycle. Parallel morphological and gene expression studies indicated a consequence of the delay was a block in the induction of C. trachomatis persistence by IFN-γ. Furthermore, L-1MT addition allowed C. trachomatis to undergo secondary differentiation, albeit with limited productive multiplication of the bacterium. IFN-γ-induced persistent infections in epithelial cells have been previously reported to be more resistant to doxycycline than normal productive infections in vitro. Pertinent to this observation, we found that L-1MT significantly improved the efficacy of doxycycline in clearing persistent C. trachomatis forms. It has been postulated that persistent forms of C. trachomatis may contribute to chronic chlamydial disease. Our findings suggest that IDO1 inhibitors such as L-1MT might provide a novel means to investigate, and potentially target, persistent chlamydial forms, particularly in conjunction with conventional therapeutics.


Frontiers in Cellular and Infection Microbiology | 2014

Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections

Ashok Aiyar; Alison J. Quayle; Lyndsey R. Buckner; Shardulendra P. Sherchand; Theresa L. Chang; Arnold H. Zea; David H. Martin; Robert J. Belland

The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacteriums capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C. trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis.


Journal of Hematology & Oncology | 2008

Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

David J. Tate; Derek J Vonderhaar; Yupanqui A Caldas; Toye Metoyer; John R. Patterson; Diego Aviles; Arnold H. Zea

BackgroundL-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC) cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested.MethodsThree murine renal cell carcinoma (mRCC) cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC.ResultsOur results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01) reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity.The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function.ConclusionThe results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell growth and aid in restoring immune function by increasing L-arginine availability for T-cell use. Understanding the interplay between arginase II and its interaction with the immune system may provide future therapeutic benefits to treat patients with RCC.


Clinical Rheumatology | 2013

The great mimicker: IgG4-related disease

Rodolfo Perez Alamino; Luis R. Espinoza; Arnold H. Zea

IgG4-related disease is defined as a multi-organ systemic disorder with pathological findings affecting a wide range of organ systems. The condition unifies a large number of clinical diagnoses previously considered as being confined to single organ systems. At present, several issues related to its pathophysiology remained controversial, including the natural history of the disease, the pathogenic role of IgG4, and its use as a biomarker. Glucocorticoids are considered the treatment of choice for remission induction of IgG4-related disease manifestations; however, concerns regarding duration of therapy and management of refractory disease remained to be elucidated.


International Journal of Biological Sciences | 2012

Interferon-gamma-induced nitric oxide inhibits the proliferation of murine renal cell carcinoma cells.

David J. Tate; John R. Patterson; Cruz Velasco-Gonzalez; Emily N. Carroll; Janie Trinh; Daniel Edwards; Ashok Aiyar; Beatriz Finkel-Jimenez; Arnold H. Zea

Renal cell carcinoma (RCC) remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs) has not improved significantly. It is likely that the lack of responses can be due to the tumors ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ), indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS) protein, resulting in a sustained elevation of nitric oxide (NO) and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.


Journal of Cellular Physiology | 2016

Defining Plasma MicroRNAs Associated With Cognitive Impairment in Hiv‐Infected Patients

Ferdous Kadri; Andrea LaPlante; Mariacristina De Luca; Lisa Doyle; Cruz Velasco-Gonzalez; Jonathan R. Patterson; Patricia E. Molina; Steve Nelson; Arnold H. Zea; Christopher Parsons; Francesca Peruzzi

Human Immunodeficiency Virus (HIV)‐infected individuals are at increased risk for developing neurocognitive disorders and depression. These conditions collectively affect more than 50% of people living with HIV/AIDS and adversely impact adherence to HIV therapy. Thus, identification of early markers of neurocognitive impairment could lead to interventions that improve psychosocial functioning and slow or reverse disease progression through improved treatment adherence. Evidence has accumulated for the role and function of microRNAs in normal and pathological conditions. We have optimized a protocol to profile microRNAs in body fluids. Using this methodology, we have profiled plasma microRNA expression for 30 age‐matched, HIV‐infected (HIV+) patients and identified highly sensitive and specific microRNA signatures distinguishing HIV+ patients with cognitive impairment from those without cognitive impairment. These results justify follow‐on studies to determine whether plasma microRNA signatures can be used as a screening or prognostic tool for HIV+ patients with neurocognitive impairment. J. Cell. Physiol. 231: 829–836, 2016.


Journal of Virology | 2009

Optimal Transactivation by Epstein-Barr Nuclear Antigen 1 Requires the UR1 and ATH1 Domains

Gyanendra Singh; Siddhesh Aras; Arnold H. Zea; Shahriar Koochekpour; Ashok Aiyar

ABSTRACT Epstein-Barr nuclear antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B cells. EBNA1 transactivates viral promoters for genes that are necessary for immortalization when it is bound to a cluster of 20 cognate binding sites, termed the family of repeats. A region of EBNA1 from amino acids (aa) 40 to 89, termed linking region 1 (LR1), has been identified previously as being sufficient for transactivation. LR1 contains two domains that are conserved in the EBNA1 orthologs of other gamma herpesviruses. The first of these, termed unique region 1 (UR1), corresponds to aa 65 to 89 of EBNA1. UR1 is necessary for transactivation and contains a conserved recognition site for cyclic AMP-dependent protein kinase (PKA), corresponding to serine 78 of EBNA1. We have pharmacologically modulated PKA activity to determine if PKA controls EBNA1s ability to transactivate. Our results indicate that PKA activators and inhibitors do not affect transactivation by EBNA1. In addition, site-directed mutagenesis demonstrates that transactivation is not influenced by the phosphorylation status of serine 78 in the UR1 domain. The second conserved domain within LR1 is a glycine-arginine repeat, corresponding to aa 40 to 54 of EBNA1. This domain, termed ATH1, functions as an AT-hook, a DNA-binding motif found in architectural transcription factors such as HMGA1a. We demonstrate that deletion of the ATH1 domain decreases EBNA1 transactivation ability, which is consistent with a transcriptional role for ATH1. Furthermore, transactivation is restored when ATH1 is replaced by equivalent AT-hook motifs from HMGA1a. Our data strongly indicate a role for AT-hooks in EBNA1s ability to transactivate, a function necessary for EBV to immortalize naïve B-cells.


Alcohol | 2015

Chronic alcohol increases CD8+ T-cell immunosenescence in simian immunodeficiency virus-infected rhesus macaques

Paige S. Katz; Robert W. Siggins; Connie Porretta; Megan Armstrong; Arnold H. Zea; Donald E. Mercante; Christopher Parsons; Ronald S. Veazey; Gregory J. Bagby; Steve Nelson; Patricia E. Molina; David A. Welsh

Activated CD8+ T-cells correlate with viral load and may foretell antiretroviral therapy (ART) failure. HIV infection has been suggested to accelerate immunosenescence through chronic persistent inflammation. Alcohol-use disorders (AUD) are prevalent in persons living with HIV/AIDS (PLWHA). We tested the hypothesis that hazardous alcohol consumption accelerates immune activation and immunosenescence. Immune activation and immunosenescence were examined in CD8+ T lymphocytes (CD3+CD4-CD8+) isolated from intestinal biopsies, axillary lymph nodes, and peripheral blood mononuclear cells (PBMCs) of chronic binge alcohol (CBA)-consuming simian immunodeficiency virus (SIV)-infected male rhesus macaques with and without antiretroviral therapy (ART; CBA/ART+, CBA/ART-) and in PBMCs isolated from a cohort of PLWHA. Polychromatic flow cytometry was used to phenotype cells isolated from intestinal biopsies, lymph nodes, and peripheral blood from rhesus macaques and PLWHA. The Alcohol Use Disorders Identification Test (AUDIT) identified hazardous alcohol drinking in PLWHA. Viral load was determined by RT-qPCR and telomere length was measured using qPCR. PBMC CD8+ T-cell activation (CD38+HLA-DR+) and immunosenescence (CD28-) were increased over baseline levels (857% ± 334, p < 0.05; 398% ± 80, p < 0.05, respectively) only in CBA animals not receiving ART. Viral load correlated with CD8+ T-cell immunosenescence in macaque PBMCs (r(s) = 0.49, p = 0.02). Activated immunosenescent T-cell (CD8+CD38+CD28-) frequencies in PBMCs from PLWHA significantly correlated with AUDIT scores (r(s) = 0.75, p = 0.001), while no correlation was observed with CD4+ T-cell and AUDIT scores (r(s) = -0.24, p = 0.38). Activated immunosenescent T-cells had shorter telomeres than CD8+ T-cells (CD8+CD28+) from PLWHA. Our results suggest that CBA and AUD augment immune activation and immunosenescence in SIV-infected macaques and PLWHA.

Collaboration


Dive into the Arnold H. Zea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wandy L. Beatty

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Reza Golshayan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Beatriz Finkel-Jimenez

LSU Health Sciences Center New Orleans

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Aviles

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hae-Joon Park

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge