Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. David Weiner is active.

Publication


Featured researches published by I. David Weiner.


Gastroenterology | 2003

Localization of the ammonium transporters, Rh B glycoprotein and Rh C glycoprotein, in the mouse liver

I. David Weiner; R. Tyler Miller; Jill W. Verlander

BACKGROUND & AIMS Hepatic ammonium metabolism is critical for maintenance of normal health. Three mammalian members of an ammonium transporter family have recently been identified: Rh A glycoprotein (RhAG), Rh B glycoprotein (RhBG), and Rh C glycoprotein (RhCG). This study examined which of these are expressed in the mouse liver and in which cells they are expressed. METHODS Normal Balb/c mice were used. Messenger RNA (mRNA) expression was detected using either conventional or real-time reverse-transcription polymerase chain reaction (RT-PCR). Protein expression was examined using immunoblot analysis and either immunohistochemical or immunofluorescent microscopy. RESULTS We confirmed hepatic RhBG mRNA expression using real-time RT-PCR. Immunoblot analysis identified expression of a approximately 45-kilodalton protein. Immunohistochemical and immunofluorescent microscopy identified basolateral RhBG immunoreactivity in 1-2 cell layers of hepatocytes surrounding central veins. No immunoreactivity was identified in periportal or midzonal hepatocytes. Perivenous hepatocyte-specific expression was confirmed by colocalization with glutamine synthetase. A second ammonium transporter, RhCG, was expressed but at substantially lower levels. Real-time RT-PCR quantified hepatic RhCG mRNA expression at approximately 0.4% of RhBG mRNA expression. Immunoblot analysis confirmed RhCG protein expression, and immunofluorescence microscopy identified RhCG expression in bile duct epithelia. In contrast to RhBG and RhCG, RhAG mRNA was not identified by RT-PCR. CONCLUSIONS RhBG and RhCG are expressed by the mouse liver. Basolateral RhBG is expressed by perivenous hepatocytes, where it may mediate ammonium uptake, and RhCG immunoreactivity is present in bile duct epithelial cells, where it may contribute to ammonium secretion into bile fluid.


American Journal of Physiology-renal Physiology | 2009

Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion

Hyun-Wook Lee; Jill W. Verlander; Jesse M. Bishop; Peter Igarashi; Mary E. Handlogten; I. David Weiner

NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined. Rh C glycoprotein (Rhcg) is expressed in the collecting duct, where NH3 secretion is necessary for both basal and acidosis-stimulated ammonia transport. To determine whether the collecting duct secretes NH3 via Rhcg or via lipid-phase diffusion, we generated mice with collecting duct-specific Rhcg deletion (CD-KO). CD-KO mice had loxP sites flanking exons 5 and 9 of the Rhcg gene (Rhcg(fl/fl)) and expressed Cre-recombinase under control of the Ksp-cadherin promoter (Ksp-Cre). Control (C) mice were Rhcg(fl/fl) but Ksp-Cre negative. We confirmed kidney-specific genomic recombination using PCR analysis and collecting duct-specific Rhcg deletion using immunohistochemistry. Under basal conditions, urinary ammonia excretion was less in KO vs. C mice; urine pH was unchanged. After acid-loading for 7 days, CD-KO mice developed more severe metabolic acidosis than did C mice. Urinary ammonia excretion did not increase significantly on the first day of acidosis in CD-KO mice, despite an intact ability to increase urine acidification, whereas it increased significantly in C mice. On subsequent days, urinary ammonia excretion slowly increased in CD-KO mice, but was always significantly less than in C mice. We conclude that collecting duct Rhcg expression contributes to both basal and acidosis-stimulated renal ammonia excretion, indicating that collecting duct ammonia secretion is, at least in part, mediated by Rhcg and not solely by lipid diffusion.


Clinical Journal of The American Society of Nephrology | 2015

Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

I. David Weiner; William E. Mitch; Jeff M. Sands

Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.


Journal of The American Society of Nephrology | 2006

Expression of the Ammonia Transporter, Rh C Glycoprotein, in Normal and Neoplastic Human Kidney

Ki-Hwan Han; Byron P. Croker; William L. Clapp; Dietrich Werner; Manisha Sahni; Jin Kim; Hye-Young Kim; Mary E. Handlogten; I. David Weiner

Recent studies have identified the presence of a novel Mep/Amt/Rh glycoprotein family of proteins that may play an important role in transmembrane ammonia transport. One of the mammalian members of this family, Rh C glycoprotein (RhCG), transports ammonia, is expressed in distal nephron sites that are critically important for ammonia secretion, exhibits increased expression in response to chronic metabolic acidosis, and originally was cloned as a tumor-related protein. The purpose of our studies was to determine the localization of RhCG in the normal and neoplastic human kidney. Immunoblot analysis of human renal cortical protein lysates demonstrated RhCG protein expression with a molecular weight of approximately 52 kD. Immunohistochemistry revealed both apical and basolateral Rhcg expression in the distal convoluted tubule, connecting segment, and initial collecting tubule and throughout the collecting duct. Co-localization with calbindin-D28k, H(+)-ATPase, aquaporin-2, and pendrin showed that distal convoluted tubule and connecting segment cells, A-type intercalated cells, and non-A, non-B cells express RhCG and that B-type intercalated cells, principal cells, and inner medullary collecting duct cells do not. In renal neoplasms, RhCG was expressed by chromophobe renal cell carcinoma and renal oncocytoma but not by clear cell renal cell carcinoma or by papillary renal cell carcinomas. These studies suggest that RhCG contributes to both apical and basolateral membrane ammonia transport in the human kidney. Furthermore, renal chromophobe renal cell carcinoma and renal oncocytoma seem to originate from the A-type intercalated cell.


Current Opinion in Nephrology and Hypertension | 2004

The Rh gene family and renal ammonium transport.

I. David Weiner

Purpose of reviewRenal acid-base homeostasis, to a very large extent, depends on renal ammonia production and transport. A putative ammonia transporter family of proteins has recently been identified, and at least two members of this family are expressed in the renal connecting segment and collecting duct. The purpose of this review is to discuss key features of renal ammonia metabolism and transport, with particular emphasis on the transporters involved in this process. Recent findingsThe putative ammonia transporter family members, RhBG and RhCG, are expressed in the renal connecting segment and collecting duct. Basolateral RhBG is expressed by all cells in the connecting segment and cortical collecting duct, and by intercalated cells in the outer medullary and inner medullary collecting duct. Apical RhCG is expressed in the same distribution and also in the outer stripe of the outer medullary collecting duct principal cells. In all regions, the expression of RhBG and RhCG is greater in intercalated cells than in principal cells. The related protein, RhAG, appears to be an erythroid-specific protein that mediates ammonium/hydrogen ion (NH4+/H+) exchange. RhBG and RhCG appear to be sodium and potassium ion-independent ammonia transporters. Whether they mediate electrogenic ammonia transport or electroneutral ammonia/hydrogen ion exchange remains an active area of investigation. Finally, transport studies have identified that electroneutral ammonium/hydrogen ion exchange is present in the collecting duct. SummaryThe Rh glycoproteins, RhBG and RhCG, appear to mediate important roles in renal ammonia transport, and therefore in acid-base homeostasis.


Comprehensive Physiology | 2013

Renal Ammonia Metabolism and Transport

I. David Weiner; Jill W. Verlander

Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.


American Journal of Physiology-renal Physiology | 2009

Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney

Hye-Young Kim; Jill W. Verlander; Jesse M. Bishop; Brian D. Cain; Ki Hwan Han; Peter Igarashi; Hyun-Wook Lee; Mary E. Handlogten; I. David Weiner

Ammonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney. Because the membrane location of Rhcg is critical for understanding its physiological role, we reassessed mouse Rhcg localization using refined immunolocalization methods. Two antibodies directed against different Rhcg-specific epitopes identified both apical and basolateral Rhcg immunolabel in mouse kidney. Immunogold electron microscopy both confirmed basolateral plasma membrane Rhcg expression and showed that apical immunolabel represented expression in both the apical plasma membrane and in subapical cytoplasmic vesicles. Immunoblots and Northern blots identified similar bands in Balb/c and C57BL/6 kidneys, suggesting basolateral Rhcg may result from alternative trafficking. Basolateral Rhcg intensity was strain dependent, with less basolateral Rhcg expression in the Balb/c mouse compared with the C57BL/6 mouse. In mice with collecting duct-specific Rhcg gene deletion, generated using Cre-loxP techniques, neither apical nor basolateral Rhcg immunolabel was identified in the collecting duct, confirming that basolateral Rhcg was the product of the same gene product as apical Rhcg. Although basolateral Rhcg expression differed between C57BL/6 and Balb/c mice, Rh B glycoprotein, which is exclusively basolateral, was expressed at similar levels in the two strains. We conclude that Rhcg is present in both the apical and basolateral plasma membrane in the mouse kidney, where it is likely to contribute to renal ammonia metabolism.


American Journal of Physiology-renal Physiology | 2010

Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion

Jesse M. Bishop; Jill W. Verlander; Hyun-Wook Lee; Raoul D. Nelson; Arthur J. Weiner; Mary E. Handlogten; I. David Weiner

Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbgs role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.


American Journal of Physiology-renal Physiology | 2010

Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion

Hyun-Wook Lee; Jill W. Verlander; Jesse M. Bishop; Raoul D. Nelson; Mary E. Handlogten; I. David Weiner

Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.


American Journal of Physiology-renal Physiology | 2014

Ammonia transport in the kidney by Rhesus glycoproteins

I. David Weiner; Jill W. Verlander

Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.

Collaboration


Dive into the I. David Weiner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki-Hwan Han

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge