Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnold van Huis is active.

Publication


Featured researches published by Arnold van Huis.


Annual Review of Entomology | 2013

Potential of Insects as Food and Feed in Assuring Food Security

Arnold van Huis

With a growing world population and increasingly demanding consumers, the production of sufficient protein from livestock, poultry, and fish represents a serious challenge for the future. Approximately 1,900 insect species are eaten worldwide, mainly in developing countries. They constitute quality food and feed, have high feed conversion ratios, and emit low levels of greenhouse gases. Some insect species can be grown on organic side streams, reducing environmental contamination and transforming waste into high-protein feed that can replace increasingly more expensive compound feed ingredients, such as fish meal. This requires the development of cost-effective, automated mass-rearing facilities that provide a reliable, stable, and safe product. In the tropics, sustainable harvesting needs to be assured and rearing practices promoted, and in general, the food resource needs to be revalorized. In the Western world, consumer acceptability will relate to pricing, perceived environmental benefits, and the development of tasty insect-derived protein products.


PLOS ONE | 2010

An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

D.G.A.B. Oonincx; Joost van Itterbeeck; M.J.W. Heetkamp; Henry van den Brand; Joop J. A. van Loon; Arnold van Huis

Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.


Food Chemistry | 2013

Extraction and characterisation of protein fractions from five insect species

Liya Yi; Catriona M.M. Lakemond; L.M.C. Sagis; Verena Eisner-Schadler; Arnold van Huis; Martinus A.J.S. van Boekel

Tenebrio molitor, Zophobas morio, Alphitobius diaperinus, Acheta domesticus and Blaptica dubia were evaluated for their potential as a future protein source. Crude protein content ranged from 19% to 22% (Dumas analysis). Essential amino acid levels in all insect species were comparable with soybean proteins, but lower than for casein. After aqueous extraction, next to a fat fraction, a supernatant, pellet, and residue were obtained, containing 17-23%, 33-39%, 31-47% of total protein, respectively. At 3% (w/v), supernatant fractions did not form stable foams and gels at pH 3, 5, 7, and 10, except for gelation for A. domesticus at pH 7. At 30% w/v, gels at pH 7 and pH 10 were formed, but not at pH 3 and pH 5. In conclusion, the insect species studied have potential to be used in foods due to: (1) absolute protein levels; (2) protein quality; (3) ability to form gels.


PLOS ONE | 2015

Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products

D.G.A.B. Oonincx; Sarah van Broekhoven; Arnold van Huis; Joop J. A. van Loon

A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food.


Journal of Ethnobiology and Ethnomedicine | 2012

Environmental manipulation for edible insect procurement: a historical perspective

Joost van Itterbeeck; Arnold van Huis

Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin.Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin.


Entomologia Experimentalis Et Applicata | 2007

Preventing desert locust plagues: optimizing management interventions

Arnold van Huis; Keith Cressman; Joyce I. Magor

Solitarious desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), inhabit the central, arid, and semi‐arid parts of the species’ invasion area in Africa, the Middle East, and South‐West Asia. Their annual migration circuit takes them downwind to breed sequentially where winter, spring, and summer rains fall. In many years, sparse and erratic seasonal rains support phase change and local outbreaks at only a few sites. Less frequently, seasonal rains are widespread, frequent, heavy, and long lasting, and many contemporaneous outbreaks occur. When such seasonal rains fall sequentially, populations develop into an upsurge and eventually into a plague unless checked by drought, migration to hostile habitats, or effective control. Increases in the proportion of gregarious populations as the plague develops alter the effectiveness of control. As an upsurge starts, only a minority of locusts is aggregated into treatable targets and spraying them leaves sufficient unsprayed individuals to continue the upsurge. Spraying all individuals scattered within an entire infested zone is arguably both financially and environmentally unacceptable. More of the population gregarizes and forms sprayable targets after each successive season of good rains and successful breeding. Eventually, unless the rains fail, the entire upsurge population becomes aggregated at high densities so that the infested area diminishes and a plague begins. These populations must continue to increase numerically and spread geographically to achieve peak plague levels, a stage last reached in the 1950s. Effective control, aided by poor rains, accompanied each subsequent late upsurge and early plague stage and all declined rapidly. The control strategy aims to reduce populations to prevent plagues and damage to crops and grazing. Differing opinions on the optimum stage to interrupt pre‐plague breeding sequences are reviewed.


Biocontrol | 2010

Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata

Elie Ayitondji Dannon; Manuele Tamò; Arnold van Huis; Marcel Dicke

The legume pod borer Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a serious pest of cowpea in West-Africa. The parasitoid Apanteles taragamae Viereck (Hymenoptera: Braconidae) that originates from Taiwan is a potential candidate for biological control of M. vitrata. We investigated under laboratory conditions the functional response of the parasitoid by offering each experienced female 10, 20, 30 and 40 larvae of M. vitrata. We studied the influence of different host larval ages on the development, longevity, sex ratio, lifetime fecundity and parasitization rate of the wasp. In a comparative study, we also investigated the life history of A. taragamae and M. vitrata at different temperatures in the range of 20–30°C. The parasitoid successfully parasitized two- and three-day-old host larvae (first and second instars). Younger larvae (one-day-old) were parasitized to a lesser extent, and only males developed in them. Older larvae were not parasitized, partly because of defensive host behaviour. The success of parasitization was positively correlated with the density of two-day-old M. vitrata larvae. Parasitoid developmental time and longevity decreased with increasing temperature. The intrinsic rate of population increase (rm) exhibited an optimum curve with a maximum at 24–28°C. For the host M. vitrata, rm was maximal at temperatures of 26–30°C. The data are discussed in the context of the potential of A. taragamae for biological control of M. vitrata.


Journal of Chemical Ecology | 2010

Effects of Volatiles from Maruca vitrata Larvae and Caterpillar-Infested Flowers of Their Host Plant Vigna unguiculata on the Foraging Behavior of the Parasitoid Apanteles taragamae

Elie Ayitondji Dannon; Manuele Tamò; Arnold van Huis; Marcel Dicke

The parasitoid wasp Apanteles taragamae is a promising candidate for the biological control of the legume pod borer Maruca vitrata, which recently has been introduced into Benin. The effects of volatiles from cowpea and peabush flowers and Maruca vitrata larvae on host selection behavior of the parasitoid Apanteles taragamae were investigated under laboratory conditions by using a Y-tube olfactometer. Naïve and oviposition-experienced female wasps were given a choice between several odor sources that included (1) uninfested, (2) Maruca vitrata-infested, and (3) mechanically damaged cowpea flowers, as well as (4) stem portions of peabush plants carrying leaves and flowers, (5) healthy M. vitrata larvae, and moribund (6), and live (7) virus-infected M. vitrata larvae. Responses of naïve and oviposition-experienced female wasps did not differ for any of the odor source combinations. Wasps were significantly attracted to floral volatiles produced by cowpea flowers that had been infested with M. vitrata larvae and from which the larvae had been removed. Apanteles taragamae females also were attracted to Maruca vitrata-infested flowers after removal of both the larvae and their feces. Female wasps discriminated between volatiles from previously infested flowers and mechanically damaged flowers. Uninfested cowpea flowers attracted only oviposition-experienced wasps that had received a rewarding experience (i.e. the parasitization of two M. vitrata larvae feeding on cowpea flowers) before the olfactometer test. Wasps also were attracted to uninfested leaves and flowers of peabush. Moreover, they were also attracted to healthy and live virus-infected M. vitrata larvae, but not when the latter were moribund. Our data show that, similarly to what has been extensively been reported for foliar volatiles, flowers of plants also emit parasitoid-attracting volatiles in response to being infested with an herbivore.


International Journal of Tropical Insect Science | 2002

Use of infochemicals in pest management with special reference to the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae)

W. Tinzaara; Marcel Dicke; Arnold van Huis; C.S. Gold

Infochemicals play an important role in the biology of many insect species. An understanding of their role in plant-herbivore-carnivore interactions can be used in the development of tools for the enhancement of environmentally benign alternatives to synthetic pesticides. This review discusses how chemical information mediates ecological interactions between organisms and the role of infochemicals in integrated pest management. Infochemicals can be used in pest monitoring and in pest control, through mating disruption, mass trapping and to aggregate herbivores at delivery sites for biological control agents. Particular emphasis is placed on the potential of using pheromones and kairomones in the management of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), a pest in plantations of East African highland banana and plantain in most banana-growing regions of the world. Cosmopolites sordidus produces an aggregation pheromone that attracts both males and females. This pheromone has been identified and synthesised and is being recommended as an effective agent in the trapping and control of the weevil. The synergism between banana plant extracts (kairomones) and the synthetic pheromone in attracting C. sordidus should be better exploited. Future research areas that can provide information for the development of an infochemical-based trapping system for the management of C. sordidus are discussed.RésuméLes sémiochimiques jouent un rôle important dans la biologie de beaucoup d’espèces d’insectes. La compréhension de leurs rôles dans les interactions plante-herbivore-carnivore peut-être utilisée pour le développement d’outils destinés à améliorer les techniques de luttes alternatives aux pesticides de synthèse. Cet article montre comment l’information chimique agit sur les interactions écologiques entre organismes et, discute du rôle des infochimiques dans la gestion intégrée des ravageurs. Les sémiochimiques peuvent être utilisés pour surveiller et contrôler les ravageurs, à l’aide de la technique de la confusion sexuelle et du piégeage de masse et pour rassembler les ravageurs en un lieu donné pour les agents de lutte biologique. Une attention particulière a été portée au rôle potentiel de l’utilisation des phéromones et des kairomones dans la gestion du charançon du bananier Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), un ravageur des plantations de bananiers des hautes terres d’Afrique de l’Est et de la plupart des zones productrices de bananes dans le monde. Cosmopolites sordidus émet une phéromone d’agrégation qui attire aussi bien les mâles que les femelles. Cette phéromone a été identifiée et synthétisée et son utilisation recommandée pour piéger et contrôler efficacement le charançon. Le synergisme entre les extraits de bananier (kairomone) et la phéromone de synthèse dans l’attraction de C. sordidus devrait être mieux exploité. Les futurs domaines de recherches pouvant fournir des informations pour le développement d’un système de piégeage à base d’infochimiques pour la gestion de C. sordidus sont discutés.


Proceedings of the Nutrition Society | 2016

Edible insects are the future

Arnold van Huis

The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

Collaboration


Dive into the Arnold van Huis's collaboration.

Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joop J. A. van Loon

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elie Ayitondji Dannon

International Institute of Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

Manuele Tamò

International Institute of Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

D.G.A.B. Oonincx

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Niels Röling

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.S. Gold

International Institute of Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

W. Tinzaara

International Institute of Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gebremedhin Woldewahid

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge