Arnout ter Schure
Electric Power Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnout ter Schure.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Siyuan Wang; Johan A. Schmidt; Sunil Baidar; Sean Coburn; B. Dix; Theodore K. Koenig; Eric C. Apel; Dene Bowdalo; Teresa L. Campos; Ed Eloranta; M. J. Evans; Joshua Digangi; Mark A. Zondlo; Ru Shan Gao; Julie Haggerty; Samuel R. Hall; Rebecca S. Hornbrook; Daniel J. Jacob; Bruce Morley; Bradley Pierce; M. Reeves; Pavel Romashkin; Arnout ter Schure; R. Volkamer
Significance Our measurements show that tropospheric halogen chemistry has a larger capacity to destroy O3 and oxidize atmospheric mercury than previously recognized. Halogen chemistry is currently missing in most global and climate models, and is effective at removing O3 at altitudes where intercontinental O3 transport occurs. It further helps explain the low O3 levels in preindustrial times. Public health concerns arise from bioaccumulation of the neurotoxin mercury in fish. Our results emphasize that bromine chemistry in the free troposphere oxidizes mercury at a faster rate, and makes water-soluble mercury available for scavenging by thunderstorms. Naturally occurring bromine in air aloft illustrates global interconnectedness between energy choices affecting mercury emissions in developing nations and mercury deposition in, e.g., Nevada, or the southeastern United States. Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.
Environmental Science & Technology | 2014
Daniel A. Jaffe; Seth N. Lyman; Helen Marie Amos; Mae Sexauer Gustin; Jiaoyan Huang; Noelle E. Selin; Leonard Levin; Arnout ter Schure; Robert P. Mason; Robert W. Talbot; Andrew Rutter; Brandon Finley; Lyatt Jaeglé; Viral Shah; Crystal D. McClure; Jesse L. Ambrose; Lynne Gratz; Steven E. Lindberg; Peter Weiss-Penzias; Guey Rong Sheu; Dara Feddersen; Milena Horvat; Ashu Dastoor; Anthony J. Hynes; H.-K. Mao; Jeroen E. Sonke; F. Slemr; Jenny A. Fisher; Ralf Ebinghaus; Yanxu Zhang
by Uncertain Measurements Daniel A. Jaffe,*,†,‡ Seth Lyman, Helen M. Amos, Mae S. Gustin, Jiaoyan Huang, Noelle E. Selin, Leonard Levin, Arnout ter Schure, Robert P. Mason, Robert Talbot, Andrew Rutter, Brandon Finley,† Lyatt Jaegle,‡ Viral Shah,‡ Crystal McClure,‡ Jesse Ambrose,† Lynne Gratz,† Steven Lindberg, Peter Weiss-Penzias, Guey-Rong Sheu, Dara Feddersen, Milena Horvat, Ashu Dastoor, Anthony J. Hynes, Huiting Mao, Jeroen E. Sonke, Franz Slemr, Jenny A. Fisher, Ralf Ebinghaus, Yanxu Zhang, and Grant Edwards⪫
Science of The Total Environment | 2012
Mark A. Engle; Lawrence F. Radke; Edward L. Heffern; Jennifer M.K. O'Keefe; James C. Hower; Charles Smeltzer; Judith M. Hower; Ricardo A. Olea; Robert J. Eatwell; D. R. Blake; Stephen D. Emsbo-Mattingly; Scott A. Stout; Gerald Queen; Kerry L. Aggen; Allan Kolker; Anupma Prakash; Kevin R. Henke; Glenn B. Stracher; Paul A. Schroeder; Yomayra Román-Colón; Arnout ter Schure
Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires.
Science of The Total Environment | 2016
Peter Weiss-Penzias; Mark E. Brigham; Matthew T. Parsons; Mae Sexauer Gustin; Arnout ter Schure
This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997-2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007-2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008-2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998-2007) producing a significantly negative trend (-1.5±0.2%year(-1)) and the recent time period (2008-2013) displaying a flat slope (-0.3±0.1%year(-1), not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.
Environmental Science & Technology | 2017
David G. Streets; Hannah M. Horowitz; Daniel J. Jacob; Zifeng Lu; Leonard Levin; Arnout ter Schure; Elsie M. Sunderland
We estimate that a cumulative total of 1540 (1060-2800) Gg (gigagrams, 109 grams or thousand tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg were emitted directly into the atmosphere, and 74% of the air emissions were elemental Hg. Cumulatively, about 1070 Gg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, and environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver production (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4.57 Gg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.
Environmental Science & Technology | 2014
Matthew S. Landis; Jeffrey V. Ryan; Arnout ter Schure; Dennis Laudal
The reduction of divalent gaseous mercury (Hg(II)) to elemental gaseous mercury (Hg(0)) in a commercial coal-fired power plant (CFPP) exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S. EPA, EPRI, EERC, and Southern Company. In-stack continuous emission monitoring data were used to establish the CFPPs real-time mercury speciation and plume dilution tracer species (SO2, NOX) emission rates, and an airship was utilized as an airborne sampling platform to maintain static position with respect to the exhaust plume centerline for semicontinuous measurement of target species. Varying levels of Hg(II) concentration (2.39-3.90 μg m(-3)) and percent abundance (∼ 87-99%) in flue gas and in-plume reduction were observed. The existence and magnitude of Hg(II) reduction to Hg(0) (0-55%) observed varied with respect to the types and relative amounts of coals combusted, suggesting that exhaust plume reduction occurring downwind of the CFPP is influenced by coal chemical composition and characteristics.
Science of The Total Environment | 2018
David G. Streets; Zifeng Lu; Leonard Levin; Arnout ter Schure; Elsie M. Sunderland
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 109g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr-1 in 1850 to 1Ggyr-1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.
Environmental Science & Technology | 2004
Craig M. Butt; Miriam Diamond; Jennifer Truong; Michael G. Ikonomou; Arnout ter Schure
Environmental Science & Technology | 2004
Arnout ter Schure; Per Larsson; Cecilia Agrell; Jan P. Boon
Atmospheric Environment | 2004
Cecilia Agrell; Arnout ter Schure; Jeanette Sveder; Alma Bokenstrand; Per Larsson; Bart N. Zegers