Leonard Levin
Electric Power Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonard Levin.
Environmental Science & Technology | 2014
Daniel A. Jaffe; Seth N. Lyman; Helen Marie Amos; Mae Sexauer Gustin; Jiaoyan Huang; Noelle E. Selin; Leonard Levin; Arnout ter Schure; Robert P. Mason; Robert W. Talbot; Andrew Rutter; Brandon Finley; Lyatt Jaeglé; Viral Shah; Crystal D. McClure; Jesse L. Ambrose; Lynne Gratz; Steven E. Lindberg; Peter Weiss-Penzias; Guey Rong Sheu; Dara Feddersen; Milena Horvat; Ashu Dastoor; Anthony J. Hynes; H.-K. Mao; Jeroen E. Sonke; F. Slemr; Jenny A. Fisher; Ralf Ebinghaus; Yanxu Zhang
by Uncertain Measurements Daniel A. Jaffe,*,†,‡ Seth Lyman, Helen M. Amos, Mae S. Gustin, Jiaoyan Huang, Noelle E. Selin, Leonard Levin, Arnout ter Schure, Robert P. Mason, Robert Talbot, Andrew Rutter, Brandon Finley,† Lyatt Jaegle,‡ Viral Shah,‡ Crystal McClure,‡ Jesse Ambrose,† Lynne Gratz,† Steven Lindberg, Peter Weiss-Penzias, Guey-Rong Sheu, Dara Feddersen, Milena Horvat, Ashu Dastoor, Anthony J. Hynes, Huiting Mao, Jeroen E. Sonke, Franz Slemr, Jenny A. Fisher, Ralf Ebinghaus, Yanxu Zhang, and Grant Edwards⪫
Science of The Total Environment | 2003
Christian Seigneur; Prakash Karamchandani; Krish Vijayaraghavan; Kristen Lohman; Run-Lie Shia; Leonard Levin
Mathematical modeling of the atmospheric fate and transport of mercury (Hg) was conducted using three nested domains covering global, continental and regional scales with horizontal resolutions of approximately 1000, 100 and 20 km, respectively. Comparisons of modeling results with wet deposition fluxes show a coefficient of determination (r(2)) of 0.45 for the continental simulation and 0.14 for the continental/regional simulation. The poor correlation obtained in the regional simulation results to a large extent from the fact that the model predicts an increasing gradient in Hg wet deposition from Minnesota to Pennsylvania, which is not observed in the monitoring network. The use of a finer spatial resolution (20 km) improves model performance in Minnesota and Wisconsin (upwind of major Hg emission sources) but degrades model performance in Pennsylvania (downwind of major Hg emission sources). We suggest the hypothesis that some key Hg chemical transformations are likely missing in current models of atmospheric Hg.
Environmental Science & Technology | 2017
David G. Streets; Hannah M. Horowitz; Daniel J. Jacob; Zifeng Lu; Leonard Levin; Arnout ter Schure; Elsie M. Sunderland
We estimate that a cumulative total of 1540 (1060-2800) Gg (gigagrams, 109 grams or thousand tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg were emitted directly into the atmosphere, and 74% of the air emissions were elemental Hg. Cumulatively, about 1070 Gg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, and environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver production (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4.57 Gg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.
Journal of The Air & Waste Management Association | 2006
Christian Seigneur; Kristen Lohman; Krish Vijayaraghavan; John J. Jansen; Leonard Levin
Abstract Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.
Environmental Software | 1992
Christian Seigneur; Akula Venkatram; Don Galya; Paul Anderson; David Liu; Donna Foliart; Rudolph von Burg; Yoram Cohen; Thomas Permutt; Leonard Levin
Abstract The health risk assessment of chemical emissions from industrial facilities requires the mathematical modeling of a variety of processes including transport and fate of chemicals within and between various environmental media, population exposure to those chemicals, their associated doses, and health effects. Several models are presently available to address these different components of a health risk assessment. Existing models were reviewed and recommendations are provided for the selection of models suitable for screening and refined risk assessments. This article presents an overview of a series of seven companion articles that address the various components of health risk assessment.
Science of The Total Environment | 2018
David G. Streets; Zifeng Lu; Leonard Levin; Arnout ter Schure; Elsie M. Sunderland
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 109g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr-1 in 1850 to 1Ggyr-1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.
Archive | 2009
Christian Seigneur; Krish Vijayaraghavan; Kristen Lohman; Leonard Levin
Mercury (Hg) has an atmospheric residence time on the order of 1 year (Schroeder and Munthe, 1998). Therefore, it can be transported over long distances and the development of source-receptor relationships requires modeling tools that are compatible with fate and transport processes at global scales. Furthermore, the assessment of the potential impact of mercury emission sources at regional scales requires knowledge of the upwind concentrations of mercury species because those upwind “background” concentrations are quite influential for modeling the atmospheric fate and transport of mercury at continental and regional scales. Since there is a paucity of data to specify such boundary conditions, particularly aloft, it is more reliable to obtain such boundary conditions from a global simulation, contingent upon satisfactory performance of the global model. To that end, the AER/EPRI global chemical transport model for mercury (CTM-Hg) was developed to simulate the global cycling of atmospheric mercury. We present first a general description of the model, followed by more detailed discussions of the chemical mechanism and emission inventory. Then, results of a performance evaluation with some available data are presented. Finally, we present results for the contribution of four source regions to atmospheric mercury deposition in those regions.
Water Air and Soil Pollution | 1999
C. Seigneur; K. Lohman; P. Pai; K. Heim; D. Mitchell; Leonard Levin
A modeling system has been developed to simulate regional environmental exposure to mercury due to atmospheric deposition of mercury to watersheds. The atmospheric fate and transport of mercury is simulated using a comprehensive three-dimensional Eulerian model, the Trace Element Atmospheric Model (TEAM). The aquatic chemistry and bioaccumulation of mercury in fish are simulated using a model of mercury cycling in a lake/watershed system, the Regional Mercury Cycling Model (R-MCM). Fish consumption was derived from a review of available surveys. Previous work focused on an assessment of the environmental and inter-individual variability in key input data (Seigneur et al., 1997a). We address here the uncertainties associated with critical model input variables (e.g., atmospheric deposition velocities, precipitation rate, limnological characteristics). A probabilistic assessment is conducted to propagate the uncertainties in the input data through the modeling system and develop a probability distribution of the human mercury dose that reflects these uncertainties. The standard deviation of the distribution of the calculated human dose is about 50% of the mean value. For the example considered here (i.e., Park Lake in Michigan, U.S.A.), 80% of the uncertainty in the human dose was due to uncertainties in the speciation of mercury air emissions, pH and temperature of the lake, burial velocity of the sediments, and rate of fish consumption.
Science of The Total Environment | 2000
Kristen Lohman; Prasad Pai; Christian Seigneur; Leonard Levin
We present a comprehensive analysis of the sensitivity of mercury (Hg) human exposure to environmental variables using a multimedia model of the fate and transport of Hg in the environment. The results of the analysis show that the Hg dose is most sensitive to the lake pH, the burial rate of Hg adsorbed to sediments, and the chemical speciation of Hg emissions to the atmosphere. The lake pH has a strong non-linear effect on the methylation rate and bioaccumulation of Hg in fish. The burial of sediments is a major pathway for removing Hg from the lake cycling. The speciation of Hg emissions is important because Hg(II) is deposited much more rapidly than Hg(0). These results highlight the importance of key variables that should be investigated through well-designed field programs, so that we can minimize the overall uncertainties associated with the modeling of mercury fate and transport.
Journal of The Air & Waste Management Association | 2000
Christian Seigneur; Cathryn Tonne; Krishnakumar Vijayaraghavan; Prasad Pai; Leonard Levin
Air quality model simulations constitute an effective approach to developing source-receptor relationships (so-called transfer coefficients in the risk analysis framework) because a significant fraction of particulate matter (particularly PM2.5) is secondary (i.e., formed in the atmosphere) and, therefore, depends on the atmospheric chemistry of the airshed. In this study, we have used a comprehensive three-dimensional air quality model for PM2 5 (SAQM-AERO) to compare three approaches to generating episodic transfer coefficients for several source regions in the Los Angeles Basin. First, transfer coefficients were developed by conducting PM2.5 SAQM-AERO simulations with reduced emissions of one of four precursors (i.e., primary PM, sulfur dioxide (SO2), oxides of nitrogen (NOx), and volatile organic compounds) from each source region. Next, we calculated transfer coefficients using two other methods: (1) a simplified chemistry for PM2.5 formation, and (2) simplifying assumptions on transport using information limited to basin-wide emission reductions. Transfer coefficients obtained with the simplified chemistry were similar to those obtained with the comprehensive model for VOC emission changes but differed for NO and SO emission changes. The differences were due to the parameterization of the rates of secondary PM formation in the simplified chemistry. In 90% of the cases, transfer coefficients estimated using only basin-wide information were within a factor of two of those obtained with the explicit source-receptor simulations conducted with the comprehensive model. The best agreement was obtained for VOC emission changes; poor agreement was obtained for primary PM2.5.ABSTRACT Air quality model simulations constitute an effective approach to developing source-receptor relationships (so-called transfer coefficients in the risk analysis framework) because a significant fraction of particulate matter (particularly PM2.5) is secondary (i.e., formed in the atmosphere) and, therefore, depends on the atmospheric chemistry of the airshed. In this study, we have used a comprehensive three-dimensional air quality model for PM2 5 (SAQM-AERO) to compare three approaches to generating episodic transfer coefficients for several source regions in the Los Angeles Basin. First, transfer coefficients were developed by conducting PM2.5 SAQM-AERO simulations with reduced emissions of one of four precursors (i.e., primary PM, sulfur dioxide (SO2), oxides of nitrogen (NOx), and volatile organic compounds) from each source region. Next, we calculated transfer coefficients using two other methods: (1) a simplified chemistry for PM2.5 formation, and (2) simplifying assumptions on transport using information limited to basin-wide emission reductions. Transfer coefficients obtained with the simplified chemistry were similar to those obtained with the comprehensive model for VOC emission changes but differed for NO and SO emission changes. The differences were due to the parameterization of the rates of secondary PM formation in the simplified chemistry. In 90% of the cases, transfer coefficients estimated using only basin-wide information were within a factor of two of those obtained with the explicit source-receptor simulations conducted with the comprehensive model. The best agreement was obtained for VOC emission changes; poor agreement was obtained for primary PM2.5.