Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arohan R. Subramanya is active.

Publication


Featured researches published by Arohan R. Subramanya.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Whole-genome association study identifies STK39 as a hypertension susceptibility gene

Ying Wang; Jeffrey R. O'Connell; Patrick F. McArdle; James B. Wade; Sarah E. Dorff; Sanjiv J. Shah; Xiaolian Shi; Lin Pan; Evadnie Rampersaud; Haiqing Shen; James Kim; Arohan R. Subramanya; Nanette I. Steinle; Afshin Parsa; Carole Ober; Paul A. Welling; Aravinda Chakravarti; Alan B. Weder; Richard S. Cooper; Braxton D. Mitchell; Alan R. Shuldiner; Yen Pei C Chang

Hypertension places a major burden on individual and public health, but the genetic basis of this complex disorder is poorly understood. We conducted a genome-wide association study of systolic and diastolic blood pressure (SBP and DBP) in Amish subjects and found strong association signals with common variants in a serine/threonine kinase gene, STK39. We confirmed this association in an independent Amish and 4 non-Amish Caucasian samples including the Diabetes Genetics Initiative, Framingham Heart Study, GenNet, and Hutterites (meta-analysis combining all studies: n = 7,125, P < 10−6). The higher BP-associated alleles have frequencies > 0.09 and were associated with increases of 3.3/1.3 mm Hg in SBP/DBP, respectively, in the Amish subjects and with smaller but consistent effects across the non-Amish studies. Cell-based functional studies showed that STK39 interacts with WNK kinases and cation-chloride cotransporters, mutations in which cause monogenic forms of BP dysregulation. We demonstrate that in vivo, STK39 is expressed in the distal nephron, where it may interact with these proteins. Although none of the associated SNPs alter protein structure, we identified and experimentally confirmed a highly conserved intronic element with allele-specific in vitro transcription activity as a functional candidate for this association. Thus, variants in STK39 may influence BP by increasing STK39 expression and consequently altering renal Na+ excretion, thus unifying rare and common BP-regulating alleles in the same physiological pathway.


Journal of Clinical Investigation | 2005

Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport

Chao Ling Yang; Xiaoman Zhu; Zhaohong Wang; Arohan R. Subramanya; David H. Ellison

With-no-lysine (WNK) kinases are highly expressed along the mammalian distal nephron. Mutations in either WNK1 or WNK4 cause familial hyperkalemic hypertension (FHHt), suggesting that the protein products converge on a final common pathway. We showed previously that WNK4 downregulates thiazide-sensitive NaCl cotransporter (NCC) activity, an effect suppressed by WNK1. Here we investigated the mechanisms by which WNK1 and WNK4 interact to regulate ion transport. We report that WNK1 suppresses the WNK4 effect on NCC activity and associates with WNK4 in a protein complex involving the kinase domains. Although a kinase-dead WNK1 also associates with WNK4, it fails to suppress WNK4-mediated NCC inhibition; the WNK1 kinase domain alone, however, is not sufficient to block the WNK4 effect. The carboxyterminal 222 amino acids of WNK4 are sufficient to inhibit NCC, but this fragment is not blocked by WNK1. Instead, WNK1 inhibition requires an intact WNK4 kinase domain, the region that binds to WNK1. In summary, these data show that: (a) the WNK4 carboxyl terminus mediates NCC suppression, (b) the WNK1 kinase domain interacts with the WNK4 kinase domain, and (c) WNK1 inhibition of WNK4 is dependent on WNK1 catalytic activity and an intact WNK1 protein. These findings provide insight into the complex interrelationships between WNK1 and WNK4 and provide a molecular basis for FHHt.


Journal of Clinical Investigation | 2009

Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway

David J. Rozansky; Tonya Cornwall; Arohan R. Subramanya; Shaunessy Rogers; Yong Feng Yang; Larry L. David; Xiaoman Zhu; Chao Ling Yang; David H. Ellison

Aldosterone regulates volume homeostasis and blood pressure by enhancing sodium reabsorption in the kidneys distal nephron (DN). On the apical surface of these renal epithelia, aldosterone increases expression and activity of the thiazide-sensitive Na-Cl cotransporter (NCC) and the epithelial sodium channel (ENaC). While the cellular mechanisms by which aldosterone regulates ENaC have been well characterized, the molecular mechanisms that link aldosterone to NCC-mediated Na+/Cl- reabsorption remain elusive. The serine/threonine kinase with-no-lysine 4 (WNK4) has previously been shown to reduce cell surface expression of NCC. Here we measured sodium uptake in a Xenopus oocyte expression system and found that serum and glucocorticoid-induced kinase 1 (SGK1), an aldosterone-responsive gene expressed in the DN, attenuated the inhibitory effect of WNK4 on NCC activity. In addition, we showed--both in vitro and in a human kidney cell line--that SGK1 bound and phosphorylated WNK4. We found one serine located within an established SGK1 consensus target sequence, and the other within a motif that was, to our knowledge, previously uncharacterized. Mutation of these target serines to aspartate, in order to mimic phosphorylation, attenuated the effect of WNK4 on NCC activity in the Xenopus oocyte system. These data thus delineate what we believe to be a novel mechanism for aldosterone activation of NCC through SGK1 signaling of WNK4 kinase.


Journal of Biological Chemistry | 2009

WNK4 Diverts the Thiazide-sensitive NaCl Cotransporter to the Lysosome and Stimulates AP-3 Interaction

Arohan R. Subramanya; Jie Liu; David H. Ellison; James B. Wade; Paul A. Welling

With-no-lysine kinase 4 (WNK4) inhibits electroneutral sodium chloride reabsorption by attenuating the cell surface expression of the thiazide-sensitive NaCl cotransporter (NCC). The underlying mechanism for this effect remains poorly understood. Here, we explore how WNK4 affects the trafficking of NCC through its interactions with intracellular sorting machinery. An analysis of NCC cell surface lifetime showed that WNK4 did not alter the net rate of cotransporter internalization. In contrast, direct measurements of forward trafficking revealed that WNK4 attenuated the rate of NCC surface delivery, inhibiting the anterograde movement of cotransporters traveling to the plasma membrane from the trans-Golgi network. The response was paralleled by a dramatic reduction in NCC protein abundance, an effect that was sensitive to the lysosomal protease inhibitor leupeptin, insensitive to proteasome inhibition, and attenuated by endogenous WNK4 knockdown. Subcellular localization studies performed in the presence of leupeptin revealed that WNK4 enhanced the accumulation of NCC in lysosomes. Moreover, NCC immunoprecipitated with endogenous AP-3 complexes, and WNK4 increased the fraction of cotransporters that associate with this adaptor, which facilitates cargo transport to lysosomes. WNK4 expression also increased LAMP-2-positive lysosomal content, indicating that the kinase may act by a general AP-3-dependent mechanism to promote cargo delivery into the lysosomal pathway. Taken together, these findings indicate that WNK4 inhibits NCC activity by diverting the cotransporter to the lysosome for degradation by way of an AP-3 transport carrier.


Clinical Journal of The American Society of Nephrology | 2014

Distal Convoluted Tubule

Arohan R. Subramanya; David H. Ellison

The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical practice.


Journal of Biological Chemistry | 2011

The Thiazide-sensitive NaCl Cotransporter Is Targeted for Chaperone-dependent Endoplasmic Reticulum-associated Degradation

Patrick G. Needham; Kasia Mikoluk; Pradeep Dhakarwal; Shaheen Khadem; Avin C. Snyder; Arohan R. Subramanya; Jeffrey L. Brodsky

Background: The cation chloride cotransporter NCC is degraded by undefined mechanisms. Results: NCC requires specific conserved machinery for chaperone-dependent recognition, ubiquitination, and proteasomal routing. Conclusion: NCC exhibits distinct ERAD requirements, which correlate with its transmembrane topology and distinguish it from other clients. Significance: These ER quality control components process misfolded conformational intermediates of NCC and other structurally related cotransporters that are vital for human health. The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control.


Journal of Biological Chemistry | 2013

Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis

Bridget F. Donnelly; Patrick G. Needham; Avin C. Snyder; Ankita Roy; Shaheen Khadem; Jeffrey L. Brodsky; Arohan R. Subramanya

Background: An incompletely defined system of cytoplasmic chaperones mediates thiazide-sensitive cotransporter (NCC) ER quality control. Results: Hsp70 and Hsp90 select NCC for cochaperone-regulated ERAD or biosynthetic maturation. Conclusion: Hsp70 and Hsp90 sequentially monitor early stages of NCC biogenesis. Significance: Differential interaction of aberrantly folded NCC with these chaperones likely contributes to the molecular basis of hereditary salt wasting and hypertension resistance. The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis.


Journal of Biological Chemistry | 2013

The Lhs1/GRP170 Chaperones Facilitate the Endoplasmic Reticulum-associated Degradation of the Epithelial Sodium Channel

Teresa M. Buck; Lindsay Plavchak; Ankita Roy; Bridget F. Donnelly; Ossama B. Kashlan; Thomas R. Kleyman; Arohan R. Subramanya; Jeffrey L. Brodsky

Background: The epithelial sodium channel (ENaC) is a substrate for the endoplasmic reticulum associated degradation (ERAD) quality control system. Results: The chaperone Lhs1/GRP170 selects the nonglycosylated form of the α subunit for ERAD. Conclusion: This study is the first to show a role for Lhs1/GRP170 in ERAD substrate selection. Significance: Mutations in ENaC are associated with human disease; therefore, Lhs1/GRP170, as a modulator of ENaC expression, may be a target for new therapeutic agents. The epithelial sodium channel, ENaC, plays a critical role in maintaining salt and water homeostasis, and not surprisingly defects in ENaC function are associated with disease. Like many other membrane-spanning proteins, this trimeric protein complex folds and assembles inefficiently in the endoplasmic reticulum (ER), which results in a substantial percentage of the channel being targeted for ER-associated degradation (ERAD). Because the spectrum of factors that facilitates the degradation of ENaC is incomplete, we developed yeast expression systems for each ENaC subunit. We discovered that a conserved Hsp70-like chaperone, Lhs1, is required for maximal turnover of the ENaC α subunit. By expressing Lhs1 ATP binding mutants, we also found that the nucleotide exchange properties of this chaperone are dispensable for ENaC degradation. Consistent with the precipitation of an Lhs1-αENaC complex, Lhs1 holdase activity was instead most likely required to support the ERAD of αENaC. Moreover, a complex containing the mammalian Lhs1 homolog GRP170 and αENaC co-precipitated, and GRP170 also facilitated ENaC degradation in human, HEK293 cells, and in a Xenopus oocyte expression system. In both yeast and higher cell types, the effect of Lhs1 on the ERAD of αENaC was selective for the unglycosylated form of the protein. These data establish the first evidence that Lhs1/Grp170 chaperones can act as mediators of ERAD substrate selection.


Journal of Clinical Investigation | 2015

Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action

Ankita Roy; Lama Al-Qusairi; Bridget F. Donnelly; Caroline Ronzaud; Allison L. Marciszyn; Fan Gong; Y.P. Christy Chang; Michael B. Butterworth; Núria M. Pastor-Soler; Kenneth R. Hallows; Olivier Staub; Arohan R. Subramanya

The thiazide-sensitive NaCl cotransporter (NCC) is important for renal salt handling and blood-pressure homeostasis. The canonical NCC-activating pathway consists of With-No-Lysine (WNK) kinases and their downstream effector kinases SPAK and OSR1, which phosphorylate NCC directly. The upstream mechanisms that connect physiological stimuli to this system remain obscure. Here, we have shown that aldosterone activates SPAK/OSR1 via WNK1. We identified 2 alternatively spliced exons embedded within a proline-rich region of WNK1 that contain PY motifs, which bind the E3 ubiquitin ligase NEDD4-2. PY motif-containing WNK1 isoforms were expressed in human kidney, and these isoforms were efficiently degraded by the ubiquitin proteasome system, an effect reversed by the aldosterone-induced kinase SGK1. In gene-edited cells, WNK1 deficiency negated regulatory effects of NEDD4-2 and SGK1 on NCC, suggesting that WNK1 mediates aldosterone-dependent activity of the WNK/SPAK/OSR1 pathway. Aldosterone infusion increased proline-rich WNK1 isoform abundance in WT mice but did not alter WNK1 abundance in hypertensive Nedd4-2 KO mice, which exhibit high baseline WNK1 and SPAK/OSR1 activity toward NCC. Conversely, hypotensive Sgk1 KO mice exhibited low WNK1 expression and activity. Together, our findings indicate that the proline-rich exons are modular cassettes that convert WNK1 into a NEDD4-2 substrate, thereby linking aldosterone and other NEDD4-2-suppressing antinatriuretic hormones to NCC phosphorylation status.


American Journal of Physiology-cell Physiology | 2013

Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase

Zhijian Wang; Arohan R. Subramanya; Lisa M. Satlin; Núria M. Pastor-Soler; Marcelo D. Carattino; Thomas R. Kleyman

Large-conductance, Ca(2+)-activated K(+) channels, commonly referred to as BK channels, have a major role in flow-induced K(+) secretion in the distal nephron. With-no-lysine kinase 4 (WNK4) is a serine-threonine kinase expressed in the distal nephron that inhibits ROMK activity and renal K(+) secretion. WNK4 mutations have been described in individuals with familial hyperkalemic hypertension (FHHt), a Mendelian disorder characterized by low-renin hypertension and hyperkalemia. As BK channels also have an important role in renal K(+) secretion, we examined whether they are regulated by WNK4 in a manner similar to ROMK. BK channel activity was inhibited in a rabbit intercalated cell line transfected with WNK4 or a WNK4 mutant found in individuals with FHHt. Coexpression of an epitope-tagged BK α-subunit with WNK4 or the WNK4 mutant in HEK293 cells reduced BK α-subunit plasma membrane and whole cell expression. A region within WNK4 encompassing the autoinhibitory domain and a coiled coil domain was required for WNK4 to inhibit BK α-subunit expression. The relative fraction of BK α-subunit that was ubiquitinated was significantly increased in cells expressing WNK4, compared with controls. Our results suggest that WNK4 inhibits BK channel activity, in part, by increasing channel degradation through an ubiquitin-dependent pathway. Based on these results, we propose that WNK4 provides a cellular mechanism for the coordinated regulation of two key secretory K(+) channels in the distal nephron, ROMK and BK.

Collaboration


Dive into the Arohan R. Subramanya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ankita Roy

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dandan Sun

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge