Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aron M. Levin is active.

Publication


Featured researches published by Aron M. Levin.


Science | 2012

Structural Basis of Wnt Recognition by Frizzled

C.Y Janda; Deepa Waghray; Aron M. Levin; Christoph Thomas; Kenan Christopher Garcia

Dissecting Wnt/Fz Interaction Wnt proteins activate the transmembrane receptor Frizzled (Fz) to initiate pathways central to vertebrate and invertebrate development. Wnts are palmitoylated, which has complicated structural and functional characterization. Janda et al. (p. 59, published online 31 May; see the Perspective by Bienz and He) achieved coexpression and purification of Xenopus Wnt8 (XWnt8) with mouse Fz8 cysteine rich domain (CRD) and determined a crystal structure of the complex. Wnt binds to the Fz8 CRD at two distinct sites with the lipid group playing a key role in the first interface. Both interfaces involve conserved amino acids, which may explain the known pleiotropy of the Wnt/Fz interaction. The structure of the morphogen Wnt bound to its receptor provides a basis for understanding Wnt’s functional pleiotropy. Wnts are lipid-modified morphogens that play critical roles in development principally through engagement of Frizzled receptors. The 3.25 angstrom structure of Xenopus Wnt8 (XWnt8) in complex with mouse Frizzled-8 (Fz8) cysteine-rich domain (CRD) reveals an unusual two-domain Wnt structure, not obviously related to known protein folds, resembling a “hand” with “thumb” and “index” fingers extended to grasp the Fz8-CRD at two distinct binding sites. One site is dominated by a palmitoleic acid lipid group projecting from serine 187 at the tip of Wnt’s thumb into a deep groove in the Fz8-CRD. In the second binding site, the conserved tip of Wnt’s “index finger” forms hydrophobic amino acid contacts with a depression on the opposite side of the Fz8-CRD. The conservation of amino acids in both interfaces appears to facilitate ligand-receptor cross-reactivity, which has important implications for understanding Wnt’s functional pleiotropy and for developing Wnt-based drugs for cancer and regenerative medicine.


Nature | 2012

Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'

Aron M. Levin; Darren L. Bates; Aaron M. Ring; Carsten Krieg; Jack Lin; Leon Su; Ignacio Moraga; Miro E. Raeber; Gregory R. Bowman; Paul A. Novick; Vijay S. Pande; C. Garrison Fathman; Onur Boyman; K. Christopher Garcia

The immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells. Considerable effort has been invested in using IL-2 as a therapeutic agent for a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic. On activated T cells, IL-2 signals through a quaternary ‘high affinity’ receptor complex consisting of IL-2, IL-2Rα (termed CD25), IL-2Rβ and IL-2Rγ. Naive T cells express only a low density of IL-2Rβ and IL-2Rγ, and are therefore relatively insensitive to IL-2, but acquire sensitivity after CD25 expression, which captures the cytokine and presents it to IL-2Rβ and IL-2Rγ. Here, using in vitro evolution, we eliminated the functional requirement of IL-2 for CD25 expression by engineering an IL-2 ‘superkine’ (also called super-2) with increased binding affinity for IL-2Rβ. Crystal structures of the IL-2 superkine in free and receptor-bound forms showed that the evolved mutations are principally in the core of the cytokine, and molecular dynamics simulations indicated that the evolved mutations stabilized IL-2, reducing the flexibility of a helix in the IL-2Rβ binding site, into an optimized receptor-binding conformation resembling that when bound to CD25. The evolved mutations in the IL-2 superkine recapitulated the functional role of CD25 by eliciting potent phosphorylation of STAT5 and vigorous proliferation of T cells irrespective of CD25 expression. Compared to IL-2, the IL-2 superkine induced superior expansion of cytotoxic T cells, leading to improved antitumour responses in vivo, and elicited proportionally less expansion of T regulatory cells and reduced pulmonary oedema. Collectively, we show that in vitro evolution has mimicked the functional role of CD25 in enhancing IL-2 potency and regulating target cell specificity, which has implications for immunotherapy.


Immunity | 2011

T Cell Receptor Signaling Is Limited by Docking Geometry to Peptide-Major Histocompatibility Complex

Jarrett J. Adams; Samanthi Narayanan; Baoyu Liu; Michael E. Birnbaum; Andrew C. Kruse; Natalie A. Bowerman; Wei Chen; Aron M. Levin; Janet M. Connolly; Cheng Zhu; David M. Kranz; K. Christopher Garcia

T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries. Three of the peptides that shared a common docking mode, where key TCR-MHC germline interactions are preserved, induced TCR signaling. The fourth peptide failed to induce signaling and was recognized in a substantially different TCR-MHC binding mode that apparently exceeded geometric tolerances compatible with signaling. We suggest that the stereotypical TCR-MHC docking paradigm evolved from productive signaling geometries and that TCR signaling can be modulated by peptides that are recognized in alternative TCR-pMHC binding orientations.


Journal of Molecular Biology | 2009

Engineered Cystine-Knot Peptides that Bind αvβ3 Integrin with Antibody-Like Affinities

Adam P. Silverman; Aron M. Levin; Jennifer L. Lahti; Jennifer R. Cochran

The alpha(v)beta(3) integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4-kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to alpha(v)beta(3) integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a six amino acid loop of AgRP with a nine amino acid loop containing the Arg-Gly-Asp integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting to identify clones with high affinity to detergent-solubilized alpha(v)beta(3) integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing alpha(v)beta(3) integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown to bind specifically to alpha(v)beta(3) integrins and had only minimal or no binding to alpha(v)beta(5), alpha(5)beta(1), and alpha(iib)beta(3) integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally occurring ligand for alpha(v)beta(3) and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second-generation libraries by individually randomizing these loops in one of the high-affinity integrin-binding variants. Screening of these loop-randomized libraries against alpha(v)beta(3) integrins resulted in peptides that retained high affinities for alpha(v)beta(3) and had increased specificities for alpha(v)beta(3) over alpha(iib)beta(3) integrins. Collectively, these data validate AgRP as a scaffold for protein engineering and demonstrate that modification of a single loop can lead to AgRP-based peptides with antibody-like affinities for their target.


Proteins | 2009

Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1 integrins with low‐nanomolar affinity

Richard H. Kimura; Aron M. Levin; Frank V. Cochran; Jennifer R. Cochran

There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009.


Science | 2013

Engineered SIRPα Variants as Immunotherapeutic Adjuvants to Anticancer Antibodies

Kipp Weiskopf; Aaron M. Ring; Chia Chi M. Ho; Jens-Peter Volkmer; Aron M. Levin; Anne K. Volkmer; Engin Özkan; Nathaniel B. Fernhoff; Matt van de Rijn; Irving L. Weissman; K. Christopher Garcia


Archive | 2009

Engineered Integrin Binding Peptides

Jennifer R. Cochran; Richard H. Kimura; Aron M. Levin


Archive | 2013

High Affinity Sirp-Alpha Reagents

Aaron M. Ring; Kenan Christopher Garcia; Kipp Weiskopf; Aron M. Levin; Irving L. Weissman


Archive | 2012

WNT COMPOSITIONS AND METHODS OF USE THEREOF

Kenan Christopher Garcia; Aron M. Levin


Archive | 2011

SUPERAGONISTS AND ANTAGONISTS OF INTERLEUKIN-2

Kenan Christopher Garcia; Aron M. Levin; Aaron M. Ring

Collaboration


Dive into the Aron M. Levin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge