Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arp Schnittger is active.

Publication


Featured researches published by Arp Schnittger.


The EMBO Journal | 2011

Integrative epigenomic mapping defines four main chromatin states in Arabidopsis

François Roudier; Ikhlak Ahmed; Caroline Bérard; Alexis Sarazin; Tristan Mary-Huard; Sandra Cortijo; Daniel Bouyer; Erwann Caillieux; Evelyne Duvernois-Berthet; Liza Al-Shikhley; Laurène Giraut; Barbara Després; Stéphanie Drevensek; Fredy Barneche; Sandra Dèrozier; Véronique Brunaud; Sébastien Aubourg; Arp Schnittger; Chris Bowler; Marie-Laure Martin-Magniette; Stéphane Robin; Michel Caboche; Vincent Colot

Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants.


The EMBO Journal | 2002

TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis.

Swen Schellmann; Arp Schnittger; Victor Kirik; T. Wada; Kiyotaka Okada; A. Beermann; J. Thumfahrt; Gerd Jürgens; Martin Hülskamp

Trichome patterning in Arabidopsis is a model for the generation of a spacing pattern from initially equivalent cells. We show that the TRIPTYCHON gene that functions in lateral inhibition encodes a single‐repeat MYB‐related transcription factor that lacks a recognizable activation domain. It has high sequence simi larity to the root hair patterning gene CAPRICE. Both genes are expressed in trichomes and act together during lateral inhibition. We further show that TRIPTYCHON and CAPRICE act redundantly in the position‐dependent cell fate determination in the root epidermis. Thus, the same lateral inhibition mechanism seems to be involved in both de novo patterning and position‐dependent cell determination. We propose a model explaining trichome and root hair patterning by a common mechanism.


Nature Genetics | 2006

A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis

Moritz K. Nowack; Paul E. Grini; Marc Jakoby; Marcel Lafos; Csaba Koncz; Arp Schnittger

Double fertilization of the egg cell and the central cell by one sperm cell each produces the diploid embryo and the typically triploid endosperm and is one of the defining characteristics of flowering plants (angiosperms). Endosperm and embryo develop in parallel to form the mature seed, but little is known about the coordination between these two organisms. We characterized a mutation of the Arabidopsis thaliana Cdc2 homolog CDC2A (also called CDKA;1), which has a paternal effect. In cdc2a mutant pollen, only one sperm cell, instead of two, is produced. Mutant pollen is viable but can fertilize only one cell in the embryo sac, allowing for a genetic dissection of the double fertilization process. We observed exclusive fertilization of the egg cell by cdc2a sperm cells. Moreover, we found that unfertilized endosperm developed, suggesting that a previously unrecognized positive signal from the fertilization of the egg cell initiates proliferation of the central cell.


PLOS Genetics | 2011

Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

Daniel Bouyer; François Roudier; Maren Heese; Ellen D. Andersen; Delphine Gey; Moritz K. Nowack; Justin Goodrich; Jean-Pierre Renou; Paul E. Grini; Vincent Colot; Arp Schnittger

Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.


Trends in Plant Science | 2011

Molecular control and function of endoreplication in development and physiology.

Lieven De Veylder; John C. Larkin; Arp Schnittger

Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life.


The Plant Cell | 2003

Misexpression of the Cyclin-Dependent Kinase Inhibitor ICK1/KRP1 in Single-Celled Arabidopsis Trichomes Reduces Endoreduplication and Cell Size and Induces Cell Death

Arp Schnittger; Christina Weinl; Daniel Bouyer; Ulrike Schöbinger; Martin Hülskamp

A positive correlation between cell size and DNA content has been recognized in many plant cell types. Conversely, misexpression of a dominant-negative cyclin-dependent kinase (CDK) or CDK inhibitor proteins (ICK/KRPs) in Arabidopsis and tobacco leaves has revealed that cell growth can be uncoupled from cell cycle progression and DNA content. However, cell growth also appears to be controlled in a non-cell-autonomous manner by organ size, making it difficult in a ubiquitous expression assay to judge the cell-autonomous function of putative cell growth regulators. Here, we investigated the function of the CDK inhibitor ICK1/KRP1 on cell growth and differentiation independent of any compensatory influence of an organ context using Arabidopsis trichomes as a model system. By analyzing cell size with respect to DNA content, we dissected cell growth in a DNA-dependent and a DNA-independent process. We further found that ICK1/KRP1 misexpression interfered with differentiation and induced cell death, linking cell cycle progression, differentiation, and cell death in plants. The function of ICK1/KRP1 in planta was found to be dependent on a C-terminal domain and regulated negatively by an N-terminal domain. Finally, we identified CDKA;1 and a D-type cyclin as possible targets of ICK1/KRP1 expression in vivo.


The Plant Cell | 2005

Novel Functions of Plant Cyclin-Dependent Kinase Inhibitors, ICK1/KRP1, Can Act Non-Cell-Autonomously and Inhibit Entry into Mitosis

Christina Weinl; Sebastian Marquardt; Suzanne J.H. Kuijt; Moritz K. Nowack; Marc Jakoby; Martin Hülskamp; Arp Schnittger

In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.


The Plant Cell | 2004

DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

M. Mar Castellano; Maria Beatrice Boniotti; Elena Caro; Arp Schnittger; Crisanto Gutierrez

In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns.


The Plant Cell | 1999

Generation of a Spacing Pattern: The Role of TRIPTYCHON in Trichome Patterning in Arabidopsis

Arp Schnittger; Ulrike Folkers; Birgit Schwab; Gerd Jürgens; Martin Hülskamp

Trichomes in Arabidopsis are single-celled hairs that exhibit a regular spacing pattern. Here, the role of TRIPTYCHON (TRY) in the generation of this spacing pattern is studied. By using genetic mosaics, we demonstrate that the formation of trichome clusters in try mutants is not correlated with cell lineage, indicating that TRY is required to single out trichome cells in a process involving cellular interactions. The genetic interactions of TRY, GLABRA1 (GL1), and TRANSPARENT TESTA GLABRA (TTG) in trichome patterning are assessed by determining the cluster frequency in various genetic combinations. It is shown that TRY acts as a negative regulator of GL1- and TTG-dependent pathways. Furthermore, it is demonstrated that trichome initiation in ttg-1, a strong ttg allele, is rescued almost to wild-type levels in a try background in which GL1 is expressed under the control of the cauliflower mosaic virus 35S promoter, indicating that TTG acts upstream of GL1 and TRY. These findings are incorporated into a model to explain the generation of a trichome spacing pattern from a homogeneous population of epidermal cells.


Plant Physiology | 2008

Transcriptional Profiling of Mature Arabidopsis Trichomes Reveals That NOECK Encodes the MIXTA-Like Transcriptional Regulator MYB106

Marc Jakoby; Doris Falkenhan; Michael T. Mader; Ginger Brininstool; Elisabeth Wischnitzki; Nicole Platz; Andrew Hudson; Martin Hülskamp; John Larkin; Arp Schnittger

Leaf hairs (trichomes) of Arabidopsis (Arabidopsis thaliana) have been extensively used as a model to address general questions in cell and developmental biology. Here, we lay the foundation for a systems-level understanding of the biology of this model cell type by performing genome-wide gene expression analyses. We have identified 3,231 genes that are up-regulated in mature trichomes relative to leaves without trichomes, and we compared wild-type trichomes with two mutants, glabra3 and triptychon, that affect trichome morphology and physiology in contrasting ways. We found that cell wall-related transcripts were particularly overrepresented in trichomes, consistent with their highly elaborated structure. In addition, trichome expression maps revealed high activities of anthocyanin, flavonoid, and glucosinolate pathways, indicative of the roles of trichomes in the biosynthesis of secondary compounds and defense. Interspecies comparisons revealed that Arabidopsis trichomes share many expressed genes with cotton (Gossypium hirsutum) fibers, making them an attractive model to study industrially important fibers. In addition to identifying physiological processes involved in the development of a specific cell type, we also demonstrated the utility of transcript profiling for identifying and analyzing regulatory gene function. One of the genes that are differentially expressed in fibers is the MYB transcription factor GhMYB25. A combination of transcript profiling and map-based cloning revealed that the NOECK gene of Arabidopsis encodes AtMYB106, a MIXTA-like transcription factor and homolog of cotton GhMYB25. However, in contrast to Antirrhinum, in which MIXTA promotes epidermal cell outgrowth, AtMYB106 appears to function as a repressor of cell outgrowth in Arabidopsis.

Collaboration


Dive into the Arp Schnittger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirofumi Harashima

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bouyer

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge