Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nico Dissmeyer is active.

Publication


Featured researches published by Nico Dissmeyer.


Developmental Cell | 2012

Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis

Moritz K. Nowack; Hirofumi Harashima; Nico Dissmeyer; Xin’Ai Zhao; Daniel Bouyer; Annika K. Weimer; Freya De Winter; Fang Yang; Arp Schnittger

Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution.


Nature | 2007

Bypassing genomic imprinting allows seed development

Moritz K. Nowack; Reza Shirzadi; Nico Dissmeyer; Andreas Dolf; Elmar Endl; Paul E. Grini; Arp Schnittger

In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm—a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger.


Plant Physiology | 2006

Analysis of the Subcellular Localization, Function, and Proteolytic Control of the Arabidopsis Cyclin-Dependent Kinase Inhibitor ICK1/KRP1

Marc Jakoby; Christina Weinl; Stefan Pusch; Suzanne J.H. Kuijt; Thomas Merkle; Nico Dissmeyer; Arp Schnittger

Recent studies have shown that cyclin-dependent kinase (CDK) inhibitors can have a tremendous impact on cell cycle progression in plants. In animals, CDK inhibitors are tightly regulated, especially by posttranslational mechanisms of which control of nuclear access and regulation of protein turnover are particularly important. Here we address the posttranslational regulation of INHIBITOR/INTERACTOR OF CDK 1 (ICK1)/KIP RELATED PROTEIN 1 (KRP1), an Arabidopsis (Arabidopsis thaliana) CDK inhibitor. We show that ICK1/KRP1 exerts its function in the nucleus and its presence in the nucleus is controlled by multiple nuclear localization signals as well as by nuclear export. In addition, we show that ICK1/KRP1 localizes to different subnuclear domains, i.e. in the nucleoplasm and to the chromocenters, hinting at specific actions within the nuclear compartment. Localization to the chromocenters is mediated by an N-terminal domain, in addition we find that this domain may be involved in cyclin binding. Further we demonstrate that ICK1/KRP1 is an unstable protein and degraded by the 26S proteasome in the nucleus. This degradation is mediated by at least two domains indicating the presence of at least two different pathways impinging on ICK1/KRP1 protein stability.


The Plant Cell | 2009

Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the Arabidopsis Cdk1 Homolog CDKA;1

Nico Dissmeyer; Annika K. Weimer; Stefan Pusch; Kristof De Schutter; Claire Lessa Alvim Kamei; Moritz K. Nowack; Bela Novak; Guilan Duan; Yong-Guan Zhu; Lieven De Veylder; Arp Schnittger

Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.


The Plant Cell | 2007

T-Loop Phosphorylation of Arabidopsis CDKA;1 Is Required for Its Function and Can Be Partially Substituted by an Aspartate Residue

Nico Dissmeyer; Moritz K. Nowack; Stefan Pusch; Hilde Stals; Dirk Inzé; Paul E. Grini; Arp Schnittger

As in other eukaryotes, progression through the cell cycle in plants is governed by cyclin-dependent kinases. Phosphorylation of a canonical Thr residue in the T-loop of the kinases is required for high enzyme activity in animals and yeast. We show that the Arabidopsis thaliana Cdc2+/Cdc28 homolog CDKA;1 is also phosphorylated in the T-loop and that phosphorylation at the conserved Thr-161 residue is essential for its function. A phospho-mimicry T161D substitution restored the primary defect of cdka;1 mutants, and although the T161D substitution displayed a dramatically reduced kinase activity with a compromised ability to bind substrates, homozygous mutant plants were recovered. The rescue by the T161D substitution, however, was not complete, and the resulting plants displayed various developmental abnormalities. For instance, even though flowers were formed, these plants were completely sterile as a result of a failure of the meiotic program, indicating that different requirements for CDKA;1 function are needed during plant development.


PLOS Genetics | 2012

A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana

Xin’Ai Zhao; Hirofumi Harashima; Nico Dissmeyer; Stefan Pusch; Annika K. Weimer; Jonathan Bramsiepe; Daniel Bouyer; Svenja Rademacher; Moritz K. Nowack; Bela Novak; Stefanie Sprunck; Arp Schnittger

The decision to replicate its DNA is of crucial importance for every cell and, in many organisms, is decisive for the progression through the entire cell cycle. A comparison of animals versus yeast has shown that, although most of the involved cell-cycle regulators are divergent in both clades, they fulfill a similar role and the overall network topology of G1/S regulation is highly conserved. Using germline development as a model system, we identified a regulatory cascade controlling entry into S phase in the flowering plant Arabidopsis thaliana, which, as a member of the Plantae supergroup, is phylogenetically only distantly related to Opisthokonts such as yeast and animals. This module comprises the Arabidopsis homologs of the animal transcription factor E2F, the plant homolog of the animal transcriptional repressor Retinoblastoma (Rb)-related 1 (RBR1), the plant-specific F-box protein F-BOX-LIKE 17 (FBL17), the plant specific cyclin-dependent kinase (CDK) inhibitors KRPs, as well as CDKA;1, the plant homolog of the yeast and animal Cdc2+/Cdk1 kinases. Our data show that the principle of a double negative wiring of Rb proteins is highly conserved, likely representing a universal mechanism in eukaryotic cell-cycle control. However, this negative feedback of Rb proteins is differently implemented in plants as it is brought about through a quadruple negative regulation centered around the F-box protein FBL17 that mediates the degradation of CDK inhibitors but is itself directly repressed by Rb. Biomathematical simulations and subsequent experimental confirmation of computational predictions revealed that this regulatory circuit can give rise to hysteresis highlighting the here identified dosage sensitivity of CDK inhibitors in this network.


The Plant Cell | 2012

RETINOBLASTOMA RELATED1 Regulates Asymmetric Cell Divisions in Arabidopsis

Annika K. Weimer; Moritz K. Nowack; Daniel Bouyer; Xin’Ai Zhao; Hirofumi Harashima; Sadaf Naseer; Freya De Winter; Nico Dissmeyer; Niko Geldner; Arp Schnittger

Formative cell divisions produce daughter cells with different identities and are of key importance for the development of multicellular organisms. Here, formative divisions in the root and shoot of Arabidopsis are shown to be modulated by a common mechanism that relies on the activity level of a core cell cycle regulator that integrates cell proliferation with cell differentiation. Formative, also called asymmetric, cell divisions produce daughter cells with different identities. Like other divisions, formative divisions rely first of all on the cell cycle machinery with centrally acting cyclin-dependent kinases (CDKs) and their cyclin partners to control progression through the cell cycle. However, it is still largely obscure how developmental cues are translated at the cellular level to promote asymmetric divisions. Here, we show that formative divisions in the shoot and root of the flowering plant Arabidopsis thaliana are controlled by a common mechanism that relies on the activity level of the Cdk1 homolog CDKA;1, with medium levels being sufficient for symmetric divisions but high levels being required for formative divisions. We reveal that the function of CDKA;1 in asymmetric cell divisions operates through a transcriptional regulation system that is mediated by the Arabidopsis Retinoblastoma homolog RBR1. RBR1 regulates not only cell cycle genes, but also, independent of the cell cycle transcription factor E2F, genes required for formative divisions and cell fate acquisition, thus directly linking cell proliferation with differentiation. This mechanism allows the implementation of spatial information, in the form of high kinase activity, with intracellular gating of developmental decisions.


Proteomics | 2015

An improved workflow for quantitative N‐terminal charge‐based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana

A. Saskia Venne; Fiorella A. Solari; Frederik Faden; Tomasso Paretti; Nico Dissmeyer; René P. Zahedi

We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).


Methods of Molecular Biology | 2011

The Age of Protein Kinases

Nico Dissmeyer; Arp Schnittger

Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.


Nature Communications | 2017

Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets

Mark D. White; Maria Klecker; Richard J. Hopkinson; Daan A. Weits; Carolin Mueller; Christin Naumann; Rebecca O'Neill; James Wickens; Jiayu Yang; Jonathan C. Brooks-Bartlett; Elspeth F. Garman; Tom N. Grossmann; Nico Dissmeyer; Emily Flashman

Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilization of group VII ETHYLENE RESPONSE FACTORs (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilization in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This provides molecular evidence of N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and a substrate of ATE1 in plants. The PCOs and ATE1 may be viable intervention targets to stabilize N-end rule substrates, including ERF-VIIs, to enhance submergence tolerance in agriculture.

Collaboration


Dive into the Nico Dissmeyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Pusch

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hirofumi Harashima

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge