Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arren Bar-Even is active.

Publication


Featured researches published by Arren Bar-Even.


Bioinformatics | 2005

Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification

Itai Yanai; Hila Benjamin; Michael Shmoish; Vered Chalifa-Caspi; Maxim Shklar; Ron Ophir; Arren Bar-Even; Shirley Horn-Saban; Marilyn Safran; Eytan Domany; Doron Lancet; Orit Shmueli

MOTIVATION Genes are often characterized dichotomously as either housekeeping or single-tissue specific. We conjectured that crucial functional information resides in genes with midrange profiles of expression. RESULTS To obtain such novel information genome-wide, we have determined the mRNA expression levels for one of the largest hitherto analyzed set of 62 839 probesets in 12 representative normal human tissues. Indeed, when using a newly defined graded tissue specificity index tau, valued between 0 for housekeeping genes and 1 for tissue-specific genes, genes with midrange profiles having 0.15< tau<0.85 were found to constitute >50% of all expression patterns. We developed a binary classification, indicating for every gene the I(B) tissues in which it is overly expressed, and the 12-I(B) tissues in which it shows low expression. The 85 dominant midrange patterns with I(B)=2-11 were found to be bimodally distributed, and to contribute most significantly to the definition of tissue specification dendrograms. Our analyses provide a novel route to infer expression profiles for presumed ancestral nodes in the tissue dendrogram. Such definition has uncovered an unsuspected correlation, whereby de novo enhancement and diminution of gene expression go hand in hand. These findings highlight the importance of gene suppression events, with implications to the course of tissue specification in ontogeny and phylogeny. AVAILABILITY All data and analyses are publically available at the GeneNote website, http://genecards.weizmann.ac.il/genenote/ and, GEO accession GSE803. CONTACT [email protected] SUPPLEMENTARY INFORMATION Four tables available at the above site.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Design and analysis of synthetic carbon fixation pathways

Arren Bar-Even; Elad Noor; Nathan E. Lewis; Ron Milo

Carbon fixation is the process by which CO2 is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin–Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin–Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology.


Nucleic Acids Research | 2012

eQuilibrator—the biochemical thermodynamics calculator

Avi Flamholz; Elad Noor; Arren Bar-Even; Ron Milo

The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Glycolytic strategy as a tradeoff between energy yield and protein cost

Avi Flamholz; Elad Noor; Arren Bar-Even; Wolfram Liebermeister; Ron Milo

Contrary to the textbook portrayal of glycolysis as a single pathway conserved across all domains of life, not all sugar-consuming organisms use the canonical Embden–Meyerhoff–Parnass (EMP) glycolytic pathway. Prokaryotic glucose metabolism is particularly diverse, including several alternative glycolytic pathways, the most common of which is the Entner–Doudoroff (ED) pathway. The prevalence of the ED pathway is puzzling as it produces only one ATP per glucose—half as much as the EMP pathway. We argue that the diversity of prokaryotic glucose metabolism may reflect a tradeoff between a pathway’s energy (ATP) yield and the amount of enzymatic protein required to catalyze pathway flux. We introduce methods for analyzing pathways in terms of thermodynamics and kinetics and show that the ED pathway is expected to require several-fold less enzymatic protein to achieve the same glucose conversion rate as the EMP pathway. Through genomic analysis, we further show that prokaryotes use different glycolytic pathways depending on their energy supply. Specifically, energy-deprived anaerobes overwhelmingly rely upon the higher ATP yield of the EMP pathway, whereas the ED pathway is common among facultative anaerobes and even more common among aerobes. In addition to demonstrating how protein costs can explain the use of alternative metabolic strategies, this study illustrates a direct connection between an organism’s environment and the thermodynamic and biochemical properties of the metabolic pathways it employs.


Nature Genetics | 2005

Transcription control reprogramming in genetic backup circuits

Ran Kafri; Arren Bar-Even; Yitzhak Pilpel

A key question in molecular genetics is why severe mutations often do not result in a detectably abnormal phenotype. This robustness was partially ascribed to redundant paralogs that may provide backup for one another in case of mutation. Mining mutant viability and mRNA expression data in Saccharomyces cerevisiae, we found that backup was provided predominantly by paralogs that are expressed dissimilarly in most growth conditions. We considered that this apparent inconsistency might be resolved by a transcriptional reprogramming mechanism that allows the intact paralog to rescue the organism upon mutation of its counterpart. We found that in wild-type cells, partial coregulation across growth conditions predicted the ability of paralogs to alter their transcription patterns and to provide backup for one another. Notably, the sets of regulatory motifs that controlled the paralogs with the most efficient backup activity deliberately overlapped only partially; paralogs with highly similar or dissimilar sets of motifs had suboptimal backup activity. Such an arrangement of partially shared regulatory motifs reconciles the differential expression of paralogs with their ability to back each other up.


Nature Chemical Biology | 2012

Rethinking glycolysis: on the biochemical logic of metabolic pathways

Arren Bar-Even; Avi Flamholz; Elad Noor; Ron Milo

Metabolic pathways may seem arbitrary and unnecessarily complex. In many cases, a chemist might devise a simpler route for the biochemical transformation, so why has nature chosen such complex solutions? In this review, we distill lessons from a century of metabolic research and introduce new observations suggesting that the intricate structure of metabolic pathways can be explained by a small set of biochemical principles. Using glycolysis as an example, we demonstrate how three key biochemical constraints--thermodynamic favorability, availability of enzymatic mechanisms and the physicochemical properties of pathway intermediates--eliminate otherwise plausible metabolic strategies. Considering these constraints, glycolysis contains no unnecessary steps and represents one of the very few pathway structures that meet cellular demands. The analysis presented here can be applied to metabolic engineering efforts for the rational design of pathways that produce a desired product while satisfying biochemical constraints.


Journal of Experimental Botany | 2012

A survey of carbon fixation pathways through a quantitative lens

Arren Bar-Even; Elad Noor; Ron Milo

While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures of yet unknown carbon fixation pathways are suggested and discussed.


Nucleic Acids Research | 2013

Spanning high-dimensional expression space using ribosome-binding site combinatorics

Lior Zelcbuch; Niv Antonovsky; Arren Bar-Even; Ayelet Levin-Karp; Uri Barenholz; Michal Dayagi; Wolfram Liebermeister; Avi Flamholz; Elad Noor; Shira Amram; Alexander Brandis; Tasneem Bareia; Ido Yofe; Halim Jubran; Ron Milo

Protein levels are a dominant factor shaping natural and synthetic biological systems. Although proper functioning of metabolic pathways relies on precise control of enzyme levels, the experimental ability to balance the levels of many genes in parallel is a major outstanding challenge. Here, we introduce a rapid and modular method to span the expression space of several proteins in parallel. By combinatorially pairing genes with a compact set of ribosome-binding sites, we modulate protein abundance by several orders of magnitude. We demonstrate our strategy by using a synthetic operon containing fluorescent proteins to span a 3D color space. Using the same approach, we modulate a recombinant carotenoid biosynthesis pathway in Escherichia coli to reveal a diversity of phenotypes, each characterized by a distinct carotenoid accumulation profile. In a single combinatorial assembly, we achieve a yield of the industrially valuable compound astaxanthin 4-fold higher than previously reported. The methodology presented here provides an efficient tool for exploring a high-dimensional expression space to locate desirable phenotypes.


Cell | 2016

Sugar Synthesis from CO2 in Escherichia coli

Niv Antonovsky; Shmuel Gleizer; Elad Noor; Yehudit Zohar; Elad Herz; Uri Barenholz; Lior Zelcbuch; Shira Amram; Aryeh Wides; Naama Tepper; Dan Davidi; Yinon Bar-On; Tasneem Bareia; David G. Wernick; Ido Shani; Sergey Malitsky; Ghil Jona; Arren Bar-Even; Ron Milo

Summary Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PaperClip


Proceedings of the National Academy of Sciences of the United States of America | 2015

Computational protein design enables a novel one-carbon assimilation pathway

Justin B. Siegel; Amanda Smith; Sean Poust; Adam J. Wargacki; Arren Bar-Even; Catherine Louw; Betty W. Shen; Christopher B. Eiben; Huu M. Tran; Elad Noor; Jasmine L. Gallaher; Jacob B. Bale; Yasuo Yoshikuni; Michael H. Gelb; Jay D. Keasling; Barry L. Stoddard; Mary E. Lidstrom; David Baker

Significance This paper describes the development of a computationally designed enzyme that is the cornerstone of a novel metabolic pathway. This enzyme, formolase, performs a carboligation reaction, directly fixing one-carbon units into three-carbon units that feed into central metabolism. By combining formolase with several naturally occurring enzymes, we created a new carbon fixation pathway, the formolase pathway, which assimilates one-carbon units via formate. Unlike native carbon fixation pathways, this pathway is linear, not oxygen sensitive, and consists of a small number of thermodynamically favorable steps. We demonstrate in vitro pathway function as a proof of principle of how protein design in a pathway context can lead to new efficient metabolic pathways. We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

Collaboration


Dive into the Arren Bar-Even's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Milo

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Avi Flamholz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doron Lancet

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Lior Zelcbuch

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dan Davidi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Niv Antonovsky

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge