Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen N. Lindner is active.

Publication


Featured researches published by Steffen N. Lindner.


Applied and Environmental Microbiology | 2008

Engineering of a Glycerol Utilization Pathway for Amino Acid Production by Corynebacterium glutamicum

Doris Rittmann; Steffen N. Lindner; Volker F. Wendisch

ABSTRACT The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures.


Microbial Biotechnology | 2013

Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine

Tobias M. Meiswinkel; Vipin Gopinath; Steffen N. Lindner; K. Madhavan Nampoothiri; Volker F. Wendisch

Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased.


Bioresource Technology | 2013

Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.

Tobias M. Meiswinkel; Doris Rittmann; Steffen N. Lindner; Volker F. Wendisch

Corynebacterium glutamicum possesses genes for glycerol kinase and glycerol-3-phosphate dehydrogenase that were shown to support slow growth with glycerol only when overexpressed from a plasmid. Pure glycerol and crude glycerol from biodiesel factories were tested for growth of recombinant strains expressing glpF, glpK and glpD from Escherichia coli. Some, but not all crude glycerol lots served as good carbon sources. Although the inhibitory compound(s) present in these crude glycerol lots remained unknown, the addition of substoichiometric glucose concentrations (below 10% by weight) enabled the utilization of some of the inhibitory crude glycerol lots. Besides growth, production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine as well as of the diamine putrescine based on crude glycerol qualities from biodiesel factories was demonstrated.


Journal of Bacteriology | 2008

The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum

Verena Engels; Steffen N. Lindner; Volker F. Wendisch

The transcriptional regulator SugR from Corynebacterium glutamicum represses genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Growth experiments revealed that the overexpression of sugR not only perturbed the growth of C. glutamicum on the PTS sugars glucose, fructose, and sucrose but also led to a significant growth inhibition on ribose, which is not taken up via the PTS. Chromatin immunoprecipitation combined with DNA microarray analysis and gel retardation experiments were performed to identify further target genes of SugR. Gel retardation analysis confirmed that SugR bound to the promoter regions of genes of the glycolytic enzymes 6-phosphofructokinase (pfkA), fructose-1,6-bisphosphate aldolase (fba), enolase (eno), pyruvate kinase (pyk), and NAD-dependent L-lactate dehydrogenase (ldhA). The deletion of sugR resulted in increased mRNA levels of eno, pyk, and ldhA in acetate medium. Enzyme activity measurements revealed that SugR-mediated repression affects the activities of PfkA, Fba, and LdhA in vivo. As the deletion of sugR led to increased LdhA activity under aerobic and under oxygen deprivation conditions, L-lactate production by C. glutamicum was determined. The overexpression of sugR reduced L-lactate production by about 25%, and sugR deletion increased L-lactate formation under oxygen deprivation conditions by threefold. Thus, SugR functions as a global repressor of genes of the PTS, glycolysis, and fermentative L-lactate dehydrogenase in C. glutamicum.


Applied and Environmental Microbiology | 2011

Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.

Steffen N. Lindner; Gerd M. Seibold; Alexander Henrich; Reinhard Krämer; Volker F. Wendisch

ABSTRACT Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with Ks values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Δhpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Δhpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield.


Computational and structural biotechnology journal | 2012

Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.

Ahmed Zahoor; Steffen N. Lindner; Volker F. Wendisch

Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols


Applied and Environmental Microbiology | 2007

NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.

Steffen N. Lindner; Dolores Vidaurre; Sabine Willbold; Siegfried M. Schoberth; Volker F. Wendisch

ABSTRACT Corynebacterium glutamicum is able to accumulate up to 600 mM cytosolic phosphorus in the form of polyphosphate (poly P). Granular poly P (volutin) can make up to 37% of the internal cell volume. This bacterium lacks the classic enzyme of poly P synthesis, class I polyphosphate kinase (PPK1), but it possesses two genes, ppk2A (corresponds to NCgl0880) and ppk2B (corresponds to NCgl2620), for putative class II (PPK2) PPKs. Deletion of ppk2B decreased PPK activity and cellular poly P content, while overexpression of ppk2B increased both PPK activity and cellular poly P content. Neither deletion nor overexpression of ppk2A changed specific activity of PPK or cellular poly P content significantly. Purified PPK2B of C. glutamicum is active as a homotetramer and formed poly P with an average chain length of about 125, as determined with 31P nuclear magnetic resonance. The catalytic efficiency of C. glutamicum PPK2B was higher in the poly P-forming direction than for nucleoside triphosphate formation from poly P. The ppk2B deletion mutant, which accumulated very little poly P and grew as C. glutamicum wild type under phosphate-sufficient conditions, showed a growth defect under phosphate-limiting conditions.


Applied Microbiology and Biotechnology | 2010

Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum

Steffen N. Lindner; Sandra Knebel; Srinivas Reddy Pallerla; Siegfried M. Schoberth; Volker F. Wendisch

The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP75. Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (ΔppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, ΔppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of ΔppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.


Applied and Environmental Microbiology | 2009

Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.

Steffen N. Lindner; Sandra Knebel; Hendrik Wesseling; Siegfried M. Schoberth; Volker F. Wendisch

ABSTRACT Corynebacterium glutamicum accumulates up to 300 mM of inorganic polyphosphate (PolyP) in the cytosol or in granules. The gene products of cg0488 (ppx1) and cg1115 (ppx2) were shown to be active as exopolyphosphatases (PPX), as overexpression of either gene resulted in higher exopolyphosphatase activities in crude extracts and deletion of either gene with lower activities than those of the wild-type strain. PPX1 and PPX2 from C. glutamicum share only 25% identical amino acids and belong to different protein groups, which are distinct from enterobacterial, archaeal, and yeast exopolyphosphatases. In comparison to that in the wild type, more intracellular PolyP accumulated in the Δppx1 and Δppx2 deletion mutations but less when either ppx1 or ppx2 was overexpressed. When C. glutamicum was shifted from phosphate-rich to phosphate-limiting conditions, a growth advantage of the deletion mutants and a growth disadvantage of the overexpression strains compared to the wild type were observed. Growth experiments, exopolyphosphatase activities, and intracellular PolyP concentrations revealed PPX2 as being a major exopolyphosphatase from C. glutamicum. PPX2His was purified to homogeneity and shown to be active as a monomer. The enzyme required Mg2+ or Mn2+ cations but was inhibited by millimolar concentrations of Mg2+, Mn2+, and Ca2+. PPX2 from C. glutamicum was active with short-chain polyphosphates, even accepting pyrophosphate, and was inhibited by nucleoside triphosphates.


Microbiology | 2013

The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases

Jessica Stolzenberger; Steffen N. Lindner; Volker F. Wendisch

The thermotolerant Gram-positive methylotroph Bacillus methanolicus is able to grow with methanol, glucose or mannitol as a sole carbon and energy source. Fructose 1,6-bisphosphate aldolase (FBA), a key enzyme of glycolysis and gluconeogenesis, is encoded in the genome of B. methanolicus by two putative fba genes, the chromosomally located fba(C) and fba(P) on the naturally occurring plasmid pBM19. Their amino acid sequences share 75 % identity and suggest a classification as class II aldolases. Both enzymes were purified from recombinant Escherichia coli and were found to be active as homotetramers. Both enzymes were activated by either manganese or cobalt ions, and inhibited by ADP, ATP and EDTA. The kinetic parameters allowed us to distinguish the chromosomally encoded FBA(C) from the plasmid encoded FBA(P), since FBA(C) showed higher affinity towards fructose 1,6-bisphosphate (Km of 0.16±0.01 mM as compared to 2±0.08 mM) as well as higher glycolytic catalytic efficiency (31.3 as compared to 0.8 s(-1) mM(-1)) than FBA(P). However, FBA(P) exhibited a higher catalytic efficiency in gluconeogenesis (50.4 as compared to 1.4 s(-1) mM(-1) with dihydroxyacetone phosphate and 4 as compared to 0.4 s(-1) mM(-1) with glyceraldehyde 3-phosphate as limiting substrate). The aldolase-negative Corynebacterium glutamicum mutant Δfda could be complemented with both FBA genes from B. methanolicus. Based on the kinetic data, we propose that FBA(C) acts as major aldolase in glycolysis, whereas FBA(P) acts as major aldolase in gluconeogenesis in B. methanolicus.

Collaboration


Dive into the Steffen N. Lindner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigitte Bathe

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris Rittmann

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge