Artemis Khatcherian
Rockefeller University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Artemis Khatcherian.
Journal of Immunology | 2008
Emma Guttman-Yassky; Michelle A. Lowes; Judilyn Fuentes-Duculan; Lisa C. Zaba; Irma Cardinale; Kristine E. Nograles; Artemis Khatcherian; Inna Novitskaya; John A. Carucci; Reuven Bergman; James G. Krueger
The classical Th1/Th2 paradigm previously defining atopic dermatitis (AD) and psoriasis has recently been challenged with the discovery of Th17 T cells that synthesize IL-17 and IL-22. Although it is becoming evident that many Th1 diseases including psoriasis have a strong IL-17 signal, the importance of Th17 T cells in AD is still unclear. We examined and compared skin biopsies from AD and psoriasis patients by gene microarray, RT-PCR, immunohistochemistry, and immunofluorescence. We found a reduced genomic expression of IL-23, IL-17, and IFN-γ in AD compared with psoriasis. To define the effects of IL-17 and IL-22 on keratinocytes, we performed gene array studies with cytokine-treated keratinocytes. We found lipocalin 2 and numerous other innate defense genes to be selectively induced in keratinocytes by IL-17. IFN-γ had no effect on antimicrobial gene-expression in keratinocytes. In AD skin lesions, protein and mRNA expression of lipocalin 2 and other innate defense genes (hBD2, elafin, LL37) were reduced compared with psoriasis. Although AD has been framed by the Th1/Th2 paradigm as a Th2 polar disease, we present evidence that the IL-23/Th17 axis is largely absent, perhaps accounting for recurrent skin infections in this disease.
Journal of Immunology | 2008
Asifa S. Haider; Michelle A. Lowes; Mayte Suárez-Fariñas; Lisa C. Zaba; Irma Cardinale; Artemis Khatcherian; Inna Novitskaya; Knut M. Wittkowski; James G. Krueger
Therapeutic modulation of psoriasis with targeted immunosuppressive agents defines inflammatory genes associated with disease activity and may be extrapolated to a wide range of autoimmune diseases. Cyclosporine A (CSA) is considered a “gold standard” therapy for moderate-to-severe psoriasis. We conducted a clinical trial with CSA and analyzed the treatment outcome in blood and skin of 11 responding patients. In the skin, as expected, CSA modulated genes from activated T cells and the “type 1” pathway (p40, IFN-γ, and STAT-1-regulated genes). However, CSA also modulated genes from the newly described Th17 pathway (IL-17, IL-22, and downstream genes S100A12, DEFB-2, IL-1β, SEPRINB3, LCN2, and CCL20). CSA also affected dendritic cells, reducing TNF and inducible NO synthase (products of inflammatory TNF- and inducible NO synthase-producing dendritic cells), CD83, and IL-23p19. We detected 220 early response genes (day 14 posttreatment) that were down-regulated by CSA. We classified >95% into proinflammatory or skin resident cells. More myeloid-derived than activated T cell genes were modulated by CSA (54 myeloid genes compared with 11 lymphocyte genes), supporting the hypothesis that myeloid derived genes contribute to pathogenic inflammation in psoriasis. In circulating mononuclear leukocytes, in stark contrast, no inflammatory gene activity was detected. Thus, we have constructed a genomic signature of successful treatment of psoriasis which may serve as a reference to guide development of other new therapies. In addition, these data also identify new gene targets for therapeutic modulation and may be applied to wide range of autoimmune diseases.
Journal of Translational Medicine | 2007
Francesca Chamian; Shao-Lee Lin; Edmund Lee; Toyoko Kikuchi; Patricia Gilleaudeau; Mary Sullivan-Whalen; Irma Cardinale; Artemis Khatcherian; Inna Novitskaya; Knut M. Wittkowski; James G. Krueger; Michelle A. Lowes
BackgroundAlefacept (anti-CD2) biological therapy selectively targets effector memory T cells (Tem) in psoriasis vulgaris, a model Type 1 autoimmune disease.MethodsCirculating leukocytes were phenotyped in patients receiving alefacept for moderate to severe psoriasis.ResultsIn all patients, this treatment caused a preferential decrease in effector memory T cells (CCR7- CD45RA-) (mean 63% reduction) for both CD4+ and CD8+ Tem, while central memory T cells (Tcm) (CCR7+CD45RA-) were less affected, and naïve T cells (CCR7+CD45RA+) were relatively spared. Circulating CD8+ effector T cells and Type 1 T cells (IFN-γ-producing) were also significantly reduced.ConclusionAlefacept causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis.
PLOS ONE | 2012
Yumiko Wada; Irma Cardinale; Artemis Khatcherian; John Chu; Aaron B. Kantor; Alice B. Gottlieb; Noriaki Tatsuta; Eric M. Jacobson; James Barsoum; James G. Krueger
Psoriasis is characterized by hyperplasia of the epidermis and infiltration of leukocytes into both the dermis and epidermis. IL-23, a key cytokine that induces TH17 cells, has been found to play a critical role in the pathogenesis of psoriasis. Apilimod is a small-molecule compound that selectively suppresses synthesis of IL-12 and IL-23. An open-label clinical study of oral administration of apilimod was conducted in patients with psoriasis. Substantial improvements in histology and clinical measurements were observed in patients receiving 70mg QD. The expression of IL-23p19 and IL-12/IL-23p40 in skin lesions was significantly reduced in this dose group, with a simultaneous increase in IL-10 observed. A decrease in the levels of TH1 and TH17 cytokines/chemokines in skin lesions followed these p19 and p40 changes. In parallel, a reduction in skin-infiltrating CD11c+ dendritic cells and CD3+ T cells was seen, with a greater decrease in the CD11c+ population. This was accompanied by increases in T and B cells, and decreases in neutrophils and eosinophils in the periphery. This study demonstrates the immunomodulatory activity of apilimod and provides clinical evidence supporting the inhibition of IL-12/IL-23 synthesis for the treatment of TH1- and TH17-mediated inflammatory diseases.
PLOS ONE | 2012
Leanne M. Johnson-Huang; Cara A. Pensabene; Kejal R. Shah; Katherine C. Pierson; Toyoko Kikuchi; Tim Lentini; Patricia Gilleaudeau; Mary Sullivan-Whalen; Inna Cueto; Artemis Khatcherian; Luke A. Hyder; Mayte Suárez-Fariñas; James G. Krueger; Michelle A. Lowes
To understand the development of new psoriasis lesions, we studied a group of moderate-to-severe psoriasis patients who experienced a relapse after ceasing efalizumab (anti-CD11a, Raptiva, Genentech). There were increased CD3+ T cells, neutrophils, CD11c+ and CD83+ myeloid dendritic cells (DCs), but no increase in CD1c+ resident myeloid DCs. In relapsed lesions, there were many CD11c+CD1c−, inflammatory myeloid DCs identified by TNFSF10/TRAIL, TNF, and iNOS. CD11c+ cells in relapsed lesions co-expressed CD14 and CD16 in situ. Efalizumab induced an improvement in many psoriasis genes, and during relapse, the majority of these genes reversed back to a lesional state. Gene Set Enrichment Analysis (GSEA) of the transcriptome of relapsed tissue showed that many of the gene sets known to be present in psoriasis were also highly enriched in relapse. Hence, on ceasing efalizumab, T cells and myeloid cells rapidly enter the skin to cause classic psoriasis. Trial registration Clinicaltrials.gov NCT00115076
European Journal of Inflammation | 2012
Emma Guttman-Yassky; Andrea Chiricozzi; J. Jacob-Hirsch; Suzanne Tintle; Artemis Khatcherian; N. Amariglio; G. Rechavi; James G. Krueger; Steven Nisticò; Reuven Bergman; Ronit Sarid
Although Kaposis sarcoma (KS) gene expression profile is closer to lymphatic (LEC) rather than blood vascular endothelial cells (BEC), uncertainty still surrounds the cellular origin of KS. To follow KS progression from early to late (nodular) stage, and characterize the molecular fingerprinting associated with each stage, gene arrays were used to compare gene expression profile of 9 skin samples of classic KS (4 Early, 2 Mixed, and 3 Nodular CKS samples) to 4 normal samples. Results for selected genes were validated by Real-time (RT) PCR and immunohistochemistry. Genes regulating immune and defense responses, angiogenesis, apoptosis and proliferation were differentially expressed in different KS stages compared to normal skin. Hierarchical clustering separated normal skin from KS with a clear gradient from early to nodular KS lesions. The gene expression level of endothelium markers, metalloproteinases, angiogenic factors and chemokines, gradually increased from normal through all KS stages. The expression of LEC genes highly increased from early to nodular KS. In the initiation phase we noticed a higher expression of growth factors, as compared to progressive stages. LEC and BEC markers co-exist in “KS expression signature”, although the LEC signature prevailed. Our results also show a complex environment of inflammatory cells and chemokines during KS evolution. A pathogenic hypothesis where cellular hyperproliferation is driven by local expression of chemokines and growth factors without clonal expansion of cells is suggested.
Journal of Experimental Medicine | 2007
Lisa C. Zaba; Irma Cardinale; Patricia Gilleaudeau; Mary Sullivan-Whalen; Mayte Suárez-Fariñas; Judilyn Fuentes-Duculan; Inna Novitskaya; Artemis Khatcherian; Mark J. Bluth; Michelle A. Lowes; James G. Krueger
Proceedings of the National Academy of Sciences of the United States of America | 2005
Francesca Chamian; Michelle A. Lowes; Shao-Lee Lin; Edmund Lee; Toyoko Kikuchi; Patricia Gilleaudeau; Mary Sullivan-Whalen; Irma Cardinale; Artemis Khatcherian; Inna Novitskaya; Knut M. Wittkowski; James G. Krueger
The Journal of Allergy and Clinical Immunology | 2007
Emma Guttman-Yassky; Michelle A. Lowes; Judilyn Fuentes-Duculan; Julia A. Whynot; Inna Novitskaya; Irma Cardinale; Asifa S. Haider; Artemis Khatcherian; John A. Carucci; Reuven Bergman; James G. Krueger
Journal of Investigative Dermatology | 2007
Helen G. Kaporis; Emma Guttman-Yassky; Michelle A. Lowes; Asifa S. Haider; Judilyn Fuentes-Duculan; Kamruz Darabi; Julia Whynot-Ertelt; Artemis Khatcherian; Irma Cardinale; Inna Novitskaya; James G. Krueger; John A. Carucci