Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur C. Riegel is active.

Publication


Featured researches published by Arthur C. Riegel.


The Journal of Neuroscience | 2004

Independent Presynaptic and Postsynaptic Mechanisms Regulate Endocannabinoid Signaling at Multiple Synapses in the Ventral Tegmental Area

Arthur C. Riegel; Carl R. Lupica

Dopamine (DA) neurons in the ventral tegmental area have been implicated in psychiatric disorders and drug abuse. Understanding the mechanisms through which their activity is regulated via the modulation of afferent input is imperative to understanding their roles in these conditions. Here we demonstrate that endocannabinoids liberated from DA neurons activate cannabinoid CB1 receptors located on glutamatergic axons and on GABAergic terminals targeting GABAB receptors located on these cells. Endocannabinoid release was initiated by inhibiting either presynaptic type-III metabotropic glutamate receptors or postsynaptic calcium-activated potassium channels, two conditions that also promote enhanced DA neuron excitability and bursting. Thus, activity-dependent release of endocannabinoids may act as a regulatory feedback mechanism to inhibit synaptic inputs in response to DA neuron bursting, thereby regulating firing patterns that may fine-tune DA release from afferent terminals.


Frontiers in Systems Neuroscience | 2011

Extracellular Glutamate: Functional Compartments Operate in Different Concentration Ranges

Khaled Moussawi; Arthur C. Riegel; Satish S. Nair; Peter W. Kalivas

Extracellular glutamate of glial origin modulates glial and neuronal glutamate release and synaptic plasticity. Estimates of the tonic basal concentration of extracellular glutamate range over three orders of magnitude (0.02–20 μM) depending on the technology employed to make the measurement. Based upon binding constants for glutamate receptors and transporters, this range of concentrations translates into distinct physiological and pathophysiological roles for extracellular glutamate. Here we speculate that the difference in glutamate measurements can be explained if there is patterned membrane surface expression of glutamate release and transporter sites creating extracellular subcompartments that vary in glutamate concentration and are preferentially sampled by different technologies.


The Journal of Neuroscience | 2014

CRF-R2 and the Heterosynaptic Regulation of VTA Glutamate during Reinstatement of Cocaine Seeking

Courtney L. Williams; William C. Buchta; Arthur C. Riegel

Stress can reinstate cocaine seeking through an interaction between the stress hormone corticotropin releasing factor (CRF) and glutamate release onto dopamine neurons in the ventral tegmental area (VTA). To better understand the underlying causes, synaptic mechanisms were investigated in brain slices from rats. In control tissue, EPSCs displayed concentration-dependent, bimodal responses to CRF potentiation at low concentrations (3–100 nm) and attenuation at higher concentrations (300 nm). EPSC potentiation and attenuation were mediated by CRF-R1 and CRF-R2 receptor subtypes, respectively, localized to presynaptic terminals. The CRF-R2 attenuation was blocked by the GABA-B receptor antagonist CGP55843. Additional recordings of GABA-A IPSCs showed CRF-R2 activation-facilitated presynaptic release of GABA, suggesting that CRF-R2 may regulate glutamate release via heterosynaptic facilitation of GABA synapses. After chronic cocaine self-administration and extinction training, the sensitivity of glutamate and GABA receptors was unchanged. However, the ability of CRF-R2 agonists to depress EPSCs and potentiate IPSCs was diminished. After yohimbine plus cue reinstatement, the actions of CRF-R2 on GABA and glutamate release were reversed. CRF-R2 activation increased EPSCs as a result of a reduction of tonic GABA-dependent inhibition. After reinstatement, application of the A1 adenosine antagonist 1,3-dipropyl-8-cyclopentylxanthine increased GABA tone to inhibit the CRF-R2 action. Blockade of GABA-B receptors prevented both the CRF-R2 increase in EPSCs and the attenuation produced by 1,3-dipropyl-8-cyclopentylxanthine. These studies demonstrate that presynaptic CRF-R1/R2 tightly regulate glutamate transmission in the VTA via a concerted, heterosynaptic manner that may become altered by stress-related pathologies, such as addiction.


Brain Research | 2015

Chronic cocaine disrupts mesocortical learning mechanisms.

William C. Buchta; Arthur C. Riegel

The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.


Nature | 2010

Neuroscience: Lack of inhibition leads to abuse.

Arthur C. Riegel; Peter W. Kalivas

Chronic drug use can lead to addiction, which is initiated by specific brain circuits. The mystery of how one class of drugs, the benzodiazepines, affects activity in this circuitry has finally been solved.


Physiological Reports | 2017

Dopamine terminals from the ventral tegmental area gate intrinsic inhibition in the prefrontal cortex

William C. Buchta; Stephen V. Mahler; Benjamin A. Harlan; Gary Aston-Jones; Arthur C. Riegel

Spike frequency adaptation (SFA or accommodation) and calcium‐activated potassium channels that underlie after‐hyperpolarization potentials (AHP) regulate repetitive firing of neurons. Precisely how neuromodulators such as dopamine from the ventral tegmental area (VTA) regulate SFA and AHP (together referred to as intrinsic inhibition) in the prefrontal cortex (PFC) remains unclear. Using whole cell electrophysiology, we measured intrinsic inhibition in prelimbic (PL) layer 5 pyramidal cells of male adult rats. Results demonstrate that bath application of dopamine reduced intrinsic inhibition (EC50: 25.0 μmol/L). This dopamine action was facilitated by coapplication of cocaine (1 μmol/L), a blocker of dopamine reuptake. To evaluate VTA dopamine terminals in PFC slices, we transfected VTA dopamine cells of TH::Cre rats in vivo with Cre‐dependent AAVs to express channelrhodopsin‐2 (ChR2) or designer receptors exclusively activated by designer drugs (DREADDS). In PFC slices from these animals, stimulation of VTA terminals with either blue light to activate ChR2 or bath application of clozapine‐N‐oxide (CNO) to activate Gq‐DREADDs produced a similar reduction in intrinsic inhibition in PL neurons. Electrophysiological recordings from cells expressing retrograde fluorescent tracers showed that this plasticity occurs in PL neurons projecting to the accumbens core. Collectively, these data highlight an ability of VTA terminals to gate intrinsic inhibition in the PFC, and under appropriate circumstances, enhance PL neuronal firing. These cellular actions of dopamine may be important for dopamine‐dependent behaviors involving cocaine and cue‐reward associations within cortical–striatal circuits.


The Journal of Neuroscience | 2018

Restoration of Kv7 Channel-Mediated Inhibition Reduces Cued-Reinstatement of Cocaine Seeking

Jeffrey Parrilla-Carrero; William C. Buchta; Priyodarshan Goswamee; Oliver Culver; Greer McKendrick; Benjamin A. Harlan; Aubin Moutal; Rachel Penrod; Abigail Lauer; Viswanathan Ramakrishnan; Rajesh Khanna; Peter W. Kalivas; Arthur C. Riegel

Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and afterhyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues. SIGNIFICANCE STATEMENT Long after the cessation of drug use, cues associated with cocaine still elicit drug-seeking behavior, in part by activation of the prelimbic prefrontal cortex (PL-PFC). The underlying cellular mechanisms governing these activated neurons remain unclear. Using a rat model of relapse to cocaine seeking, we identified a population of PL-PFC neurons that become hyperexcitable following chronic cocaine self-administration. These neurons show persistent loss of spike frequency adaptation, reduced afterhyperpolarizations, decreased sensitivity to dopamine, and reduced Kv7 channel-mediated inhibition. Stabilization of Kv7 channel function with retigabine normalized neuronal excitability, restored Kv7 channel currents, and reduced drug-seeking behavior when administered into the PL-PFC before reinstatement. These data highlight a persistent adaptation in a subset of PL-PFC neurons that may contribute to relapse vulnerability.


Neuropsychopharmacology | 2018

Opposing actions of CRF-R1 and CB1 receptors on VTA-GABAergic plasticity following chronic exposure to ethanol

Benjamin A. Harlan; Howard C. Becker; John J. Woodward; Arthur C. Riegel

Dopamine neurons in the ventral tegmental area (VTA) influence learned behaviors and neuropsychiatric diseases including addiction. The stress peptide corticotrophin-releasing factor (CRF) contributes to relapse to drug and alcohol seeking following withdrawal, although the cellular actions are poorly understood. In this study, we show that presynaptic CRF type 1 receptors (CRF-R1) potentiate GABA release onto mouse VTA dopamine neurons via a PKC-Ca2+ signaling mechanism. In naive animals, activation of CRF-R1 by bath application of CRF or ethanol enhanced GABAA inhibitory postsynaptic currents (IPSCs). Following 3 days of withdrawal from four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure, spontaneous IPSC frequency was enhanced while CRF and ethanol potentiation of IPSCs was intact. However, withdrawal for 3 weeks or more was associated with reduced spontaneous IPSC frequency and diminished CRF and ethanol responses. Long-term withdrawal was also accompanied by decreased sensitivity to the CB1 receptor agonist WIN55212 as well as greatly enhanced sensitivity to the CB1 antagonist AM251. Inclusion of BAPTA in the internal recording solution restored the responsiveness to CRF or ethanol and reduced the potentiating actions of AM251. Together, these data suggest that GABAA inhibition of VTA dopamine neurons is regulated by presynaptic actions of CRF and endocannabinoids and that long-term withdrawal from CIE treatment enhances endocannabinoid-mediated inhibition, thereby suppressing CRF facilitation of GABA release. Such findings have implications for understanding the impact of chronic alcohol on stress-related, dopamine-mediated alcohol-seeking behaviors.


bioRxiv | 2018

Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal Multifaceted Roles in Cocaine Abuse

Stephen V. Mahler; Zachary D. Brodnik; Brittney M. Cox; William C. Buchta; Brandon S. Bentzley; Zackary A. Cope; Edwin C Lin; Matthew D Riedy; Michael D. Scofield; Justin Messinger; Arthur C. Riegel; Rodrigo A. España; Gary Aston-Jones

Ventral tegmental area (VTA) dopamine (DA) neurons perform diverse functions in motivation and cognition, but their precise roles in addiction-related behaviors are still debated. Here, we targeted VTA DA neurons for bidirectional chemogenetic modulation during specific tests of cocaine reinforcement, demand, and relapse-related behaviors, querying the roles of DA neuron inhibitory and excitatory G-protein signaling in these processes. Designer receptor stimulation of Gq-, but not Gs-signaling in DA neurons enhanced cocaine seeking via functionally distinct projections to forebrain limbic regions. In contrast, engaging inhibitory Gi/o signaling in DA neurons blunted cocaine’s reinforcing and priming effects, reduced stress-potentiated reinstatement, and altered cue-induced cocaine seeking strategy, but not the motivational impact of cocaine cues per se. Results demonstrate that DA neurons play several distinct roles in cocaine seeking, depending on behavioral context, G-protein signaling, and DA neuron efferent target, highlighting their multifaceted roles in addiction. Significance Statement G-protein coupled receptors are crucial modulators of VTA dopamine neuron activity, but how metabotropic signaling impacts dopamine’s complex roles in reward and addiction is poorly understood. Here, we bidirectionally modulate dopamine neuron G-protein signaling with DREADDs during a variety of cocaine seeking behaviors, revealing nuanced, pathway-specific roles in cocaine reward, effortful seeking, and relapse-like behaviors. Gq- and Gs-stimulation activated dopamine neurons, but only Gq stimulation robustly enhanced cocaine seeking. Gi/o inhibitory signaling altered the response strategy employed during cued reinstatement, and reduced some, but not all types of cocaine seeking. Results show that VTA dopamine neurons modulate numerous distinct aspects of cocaine addiction- and relapse-related behaviors, and indicate potential new approaches for intervening in these processes to treat addiction.


bioRxiv | 2018

The CRF-R1 regulation of VTA-GABAergic plasticity is suppressed by CB1 receptor inhibition following chronic exposure to alcohol

Benjamin A. Harlan; Howard C. Becker; John J. Woodward; Arthur C. Riegel

Dopamine neurons in the ventral tegmental area (VTA) influence learned behaviors and neuropsychiatric diseases including addiction. The stress peptide corticotrophin-releasing factor (CRF) contributes to relapse to drug and alcohol seeking following withdrawal, although the cellular actions are poorly understood. In this study, we show that presynaptic CRF type 1 receptors (CRF-R1) potentiate GABA release onto mouse VTA dopamine neurons via a PKC-Ca2+ signaling mechanism. In na1ve animals, activation of CRF-R1 by bath application of CRF or ethanol enhanced GABAA inhibitory postsynaptic currents (IPSCs). Following three days of withdrawal from four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure, spontaneous IPSC frequency was enhanced while CRF- and ethanol-potentiation of IPSCs was intact. However, withdrawal for 3 weeks or more was associated with reduced spontaneous IPSC frequency and diminished CRF and ethanol responses. Long-term withdrawal was also accompanied by decreased sensitivity to the CB1 receptor agonist WIN55212 as well as greatly enhanced sensitivity to the CB1 antagonist AM-251. Inclusion of BAPTA in the internal recording solution restored the responsiveness to CRF or ethanol and reduced the potentiating actions of AM251. Together, these data suggest that GABAA inhibition of VTA dopamine neurons is regulated by presynaptic actions of CRF and endocannabinoids and that long-term withdrawal from CIE treatment enhances endocannabinoid mediated inhibition, thereby suppressing CRF facilitation of GABA release. Such findings have implications for understanding the impact of chronic alcohol on stress-related, dopamine-mediated alcohol seeking behaviors.

Collaboration


Dive into the Arthur C. Riegel's collaboration.

Top Co-Authors

Avatar

William C. Buchta

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Peter W. Kalivas

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Harlan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard C. Becker

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Parrilla-Carrero

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

John J. Woodward

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Priyodarshan Goswamee

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abigail Lauer

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge