Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur Georges is active.

Publication


Featured researches published by Arthur Georges.


Nature | 2015

Sex reversal triggers the rapid transition from genetic to temperature-dependent sex

Clare E. Holleley; Denis O'Meally; Stephen D. Sarre; Jennifer A. Marshall Graves; Tariq Ezaz; Kazumi Matsubara; Bhumika Azad; Xiuwen Zhang; Arthur Georges

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene–environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.


Systematic Biology | 2014

Global Biodiversity Assessment and Hyper-Cryptic Species Complexes: More Than One Species of Elephant in the Room?

Mark Adams; Tarmo A. Raadik; Christopher P. Burridge; Arthur Georges

Several recent estimates of global biodiversity have concluded that the total number of species on Earth lies near the lower end of the wide range touted in previous decades. However, none of these recent estimates formally explore the real elephant in the room, namely, what proportion of species are taxonomically invisible to conventional assessments, and thus, as undiagnosed cryptic species, remain uncountable until revealed by multi-gene molecular assessments. Here we explore the significance and extent of so-called hyper-cryptic species complexes, using the Australian freshwater fish Galaxias olidus as a proxy for any organism whose taxonomy ought to be largely finalized when compared to those in little-studied or morphologically undifferentiated groups. Our comprehensive allozyme (838 fish for 54 putative loci), mtDNA (557 fish for 605 bp of cytb), and morphological (1963-3389 vouchers for 17-58 characters) assessment of this species across its broad geographic range revealed a 1500% increase in species-level biodiversity, and suggested that additional taxa may remain undiscovered. Importantly, while all 15 candidate species were morphologically diagnosable a posteriori from one another, single-gene DNA barcoding proved largely unsuccessful as an a priori method for species identification. These results lead us to draw two strong inferences of relevance to estimates of global biodiversity. First, hyper-cryptic complexes are likely to be common in many organismal groups. Second, no assessment of species numbers can be considered best practice in the molecular age unless it explicitly includes estimates of the extent of cryptic and hyper-cryptic biodiversity. [Galaxiidae; global estimates; hyper-diverse; mountain galaxias; species counts; species richness.].


Copeia | 1982

Diet of the Australian freshwater turtle Emydura krefftii (Chelonia: Chelidae), in an unproductive lentic environment

Arthur Georges

The abundance of Emydura krefftii in the nutrient-deficient dune lakes of Fraser Island, Australia, is explained in terms of the species broad food habits and its ability to directly utilise foods of terrestrial origin. Small specimens of E. krefftii are carnivorous, relying principally on aquatic and terrestrial insects, and small crustaceans. As they grow, the turtles become omnivorous and eat larger varieties of insect and crustacean. The changes in diet with increasing turtle size are explained in terms of energetic efficiency, and by the fact that as the turtles grow, more robust food items become available to them. The diets of mature males and females of similar sizes do not differ appreciably.


GigaScience | 2015

High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps

Arthur Georges; Qiye Li; Jinmin Lian; Denis O’Meally; Janine E. Deakin; Zongji Wang; Pei Zhang; Matthew K. Fujita; Hardip R. Patel; Clare E. Holleley; Yang Zhou; Xiuwen Zhang; Kazumi Matsubara; Paul D. Waters; Jennifer A. Marshall Graves; Stephen D. Sarre; Guojie Zhang

BackgroundThe lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps.FindingsThe genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250xa0bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85xa0% of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4xa0% of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300xa0bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63xa0% of which had intact open reading frames. Our assembly captured 99xa0% (246 of 248) of core CEGMA genes, with 93xa0% (231) being complete.ConclusionsThe quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.


PLOS ONE | 2014

Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences.

Kazumi Matsubara; Stephen D. Sarre; Arthur Georges; Yoichi Matsuda; Jennifer A. Marshall Graves; Tariq Ezaz

Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.


Chromosoma | 2016

Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida

Kazumi Matsubara; Denis O'Meally; Bhumika Azad; Arthur Georges; Stephen D. Sarre; Jennifer A. Marshall Graves; Yoichi Matsuda; Tariq Ezaz

The sex chromosomes in Sauropsida (reptiles and birds) have evolved independently many times. They show astonishing diversity in morphology ranging from cryptic to highly differentiated sex chromosomes with male (XX/XY) and female heterogamety (ZZ/ZW). Comparing such diverse sex chromosome systems thus provides unparalleled opportunities to capture evolution of morphologically differentiated sex chromosomes in action. Here, we describe chromosomal mapping of 18 microsatellite repeat motifs in eight species of Sauropsida. More than two microsatellite repeat motifs were amplified on the sex-specific chromosome, W or Y, in five species (Bassiana duperreyi, Aprasia parapulchella, Notechis scutatus, Chelodina longicollis, and Gallus gallus) of which the sex-specific chromosomes were heteromorphic and heterochromatic. Motifs (AAGG)n and (ATCC)n were amplified on the W chromosome of Pogona vitticeps and the Y chromosome of Emydura macquarii, respectively. By contrast, no motifs were amplified on the W chromosome of Christinus marmoratus, which is not much differentiated from the Z chromosome. Taken together with previously published studies, our results suggest that the amplification of microsatellite repeats is tightly associated with the differentiation and heterochromatinization of sex-specific chromosomes in sauropsids as well as in other taxa. Although some motifs were common between the sex-specific chromosomes of multiple species, no correlation was observed between this commonality and the species phylogeny. Furthermore, comparative analysis of sex chromosome homology and chromosomal distribution of microsatellite repeats between two closely related chelid turtles, C. longicollis and E. macquarii, identified different ancestry and differentiation history. These suggest multiple evolutions of sex chromosomes in the Sauropsida.


Science Advances | 2017

Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination

Ira W. Deveson; Clare E. Holleley; James Blackburn; Jennifer A. Marshall Graves; John S. Mattick; Paul D. Waters; Arthur Georges

Alternative splicing in chromatin-modifying genes is associated with temperature-dependent sex in divergent reptile lineages. In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.


Ecology and Evolution | 2014

Under what conditions do climate-driven sex ratios enhance versus diminish population persistence?

Maria Boyle; Jim Hone; Lisa E. Schwanz; Arthur Georges

For many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature-dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female-biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.


Proceedings of the Royal Society B: Biological Sciences | 2016

The behavioural consequences of sex reversal in dragons

Hong Li; Clare E. Holleley; Melanie J. Elphick; Arthur Georges; Richard Shine

Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.


Sexual Development | 2016

Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

Clare E. Holleley; Stephen D. Sarre; Denis O'Meally; Arthur Georges

Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes.

Collaboration


Dive into the Arthur Georges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tariq Ezaz

University of Canberra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis O'Meally

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge