Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur S. Aylsworth is active.

Publication


Featured researches published by Arthur S. Aylsworth.


Nature Genetics | 2002

Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes

Shinji Kondo; Brian C. Schutte; Rebecca Richardson; Bryan C. Bjork; Alexandra S. Knight; Yoriko Watanabe; Emma Howard; Renata de Lima; Sandra Daack-Hirsch; A. Sander; Donna M. McDonald-McGinn; Elaine H. Zackai; Edward J. Lammer; Arthur S. Aylsworth; Holly H. Ardinger; Andrew C. Lidral; Barbara R. Pober; Lina M. Moreno; Mauricio Arcos-Burgos; Consuelo Valencia; Claude Houdayer; Michel Bahuau; Danilo Moretti-Ferreira; Antonio Richieri-Costa; Michael J. Dixon; Jeffrey C. Murray

Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix–turn–helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-α and -β after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32–q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies

Jan O. Korbel; Tal Tirosh-Wagner; Alexander E. Urban; Xiao Ning Chen; Maya Kasowski; Li Dai; Fabian Grubert; Chandra Erdman; Michael C. Gao; Ken Lange; Eric M. Sobel; Gillian M. Barlow; Arthur S. Aylsworth; Nancy J. Carpenter; Robin D. Clark; Monika Y. Cohen; Eric Doran; Tzipora C. Falik-Zaccai; Susan O. Lewin; Ira T. Lott; Barbara McGillivray; John B. Moeschler; Mark J. Pettenati; Siegfried M. Pueschel; Kathleen W. Rao; Lisa G. Shaffer; Mordechai Shohat; Alexander J. Van Riper; Dorothy Warburton; Sherman M. Weissman

Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8–16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS—i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.


American Journal of Human Genetics | 1999

Mutation Analysis of Core Binding Factor A1 in Patients with Cleidocranial Dysplasia

I. Quack; B. Vonderstrass; M. Stock; Arthur S. Aylsworth; A. Becker; L. Brueton; Philip Lee; Frank Majewski; John B. Mulliken; M. Suri; Martin Zenker; Stefan Mundlos; F. Otto

Cleidocranial dysplasia (CCD) is a dominantly inherited disorder characterized by patent fontanelles, wide cranial sutures, hypoplasia of clavicles, short stature, supernumerary teeth, and other skeletal anomalies. We recently demonstrated that mutations in the transcription factor CBFA1, on chromosome 6p21, are associated with CCD. We have now analyzed the CBFA1 gene in 42 unrelated patients with CCD. In 18 patients, mutations were detected in the coding region of the CBFA1 gene, including 8 frameshift, 2 nonsense, and 9 missense mutations, as well as 2 novel polymorphisms. A cluster of missense mutations at arginine 225 (R225) identifies this residue as crucial for CBFA1 function. In vitro green fluorescent protein fusion studies show that R225 mutations interfere with nuclear accumulation of CBFA1 protein. There is no phenotypic difference between patients with deletions or frameshifts and those with other intragenic mutations, suggesting that CCD is generally caused by haploinsufficiency. However, we were able to extend the CCD phenotypic spectrum. A missense mutation identified in one family with supernumerary teeth and a radiologically normal skeleton indicates that mutations in CBFA1 can be associated exclusively with a dental phenotype. In addition, one patient with severe CCD and a frameshift mutation in codon 402 had osteoporosis leading to recurrent bone fractures and scoliosis, providing first evidence that CBFA1 may help maintain adult bone, in addition to its function in bone development.


Genetics in Medicine | 2007

The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome

Lisa G. Shaffer; Aaron Theisen; Bassem A. Bejjani; Blake C. Ballif; Arthur S. Aylsworth; Cynthia Lim; Marie McDonald; Jay W. Ellison; Dana Kostiner; Sulagna C. Saitta; Tamim H. Shaikh

Purpose: The advent of molecular cytogenetic technologies has altered the means by which new microdeletion syndromes are identified. Whereas the cytogenetic basis of microdeletion syndromes has traditionally depended on the serendipitous ascertainment of a patient with established clinical features and a chromosomal rearrangement visible by G-banding, comparative genomic hybridization using microarrays has enabled the identification of novel, recurrent imbalances in patients with mental retardation and apparently nonspecific features. Compared with the “phenotype-first” approach of traditional cytogenetics, array-based comparative genomic hybridization has enabled the detection of novel genomic disorders using a “genotype-first” approach. We report as an illustrative example the characterization of a novel microdeletion syndrome of 1q41q42.Methods: We tested more than 10,000 patients with developmental disabilities by array-based comparative genomic hybridization using our targeted microarray. High-resolution microarray analysis was performed using oligonucleotide microarrays for patients in whom deletions of 1q41q42 were identified. Fluorescence in situ hybridization was performed to confirm all 1q deletions in the patients and to exclude deletions or other chromosomal rearrangements in the parents.Results: Seven cases were found with de novo deletions of 1q41q42. The smallest region of overlap is 1.17 Mb and encompasses five genes, including DISP1, a gene involved in the sonic hedgehog signaling pathway, the deletion of which has been implicated in holoprosencephaly in mice. Although none of these patients showed frank holoprosencephaly, many had other midline defects (cleft palate, diaphragmatic hernia), seizures, and mental retardation or developmental delay. Dysmorphic features are present in all patients at varying degrees. Some patients showed more severe phenotypes and carry the clinical diagnosis of Fryns syndrome.Conclusions: This new microdeletion syndrome with its variable clinical presentation may be responsible for a proportion of Fryns syndrome patients and adds to the increasing number of new syndromes identified with array-based comparative genomic hybridization. The genotype-first approach to identifying recurrent chromosome abnormalities is contrasted with the traditional phenotype-first approach. Targeting developmental pathways in a functional approach to diagnostics may lead to the identification of additional microdeletion syndromes.


American Journal of Medical Genetics Part A | 2010

Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP–HHT syndrome†

Carol J. Gallione; Arthur S. Aylsworth; Jill Beis; Terri Berk; Barbara A. Bernhardt; Robin D. Clark; Carol L. Clericuzio; Cesare Danesino; Joanne M. Drautz; Jeffrey Fahl; Zheng Fan; Marie E. Faughnan; Arupa Ganguly; John Garvie; Katharine J. Henderson; Usha Kini; Mark Ludman; Andreas Lux; Melissa Maisenbacher; Sara Mazzucco; Carla Olivieri; Johannes K. Ploos van Amstel; Nadia Prigoda‐Lee; Reed E. Pyeritz; Willie Reardon; Kirk Vandezande; J. Deane Waldman; Robert I. White; Charles A. Williams; Douglas A. Marchuk

Juvenile polyposis (JP) and hereditary hemorrhagic telangiectasia (HHT) are clinically distinct diseases caused by mutations in SMAD4 and BMPR1A (for JP) and endoglin and ALK1 (for HHT). Recently, a combined syndrome of JP–HHT was described that is also caused by mutations in SMAD4. Although both JP and JP–HHT are caused by SMAD4 mutations, a possible genotype:phenotype correlation was noted as all of the SMAD4 mutations in the JP–HHT patients were clustered in the COOH‐terminal MH2 domain of the protein. If valid, this correlation would provide a molecular explanation for the phenotypic differences, as well as a pre‐symptomatic diagnostic test to distinguish patients at risk for the overlapping but different clinical features of the disorders. In this study, we collected 19 new JP–HHT patients from which we identified 15 additional SMAD4 mutations. We also reviewed the literature for other reports of JP patients with HHT symptoms with confirmed SMAD4 mutations. Our combined results show that although the SMAD4 mutations in JP–HHT patients do show a tendency to cluster in the MH2 domain, mutations in other parts of the gene also cause the combined syndrome. Thus, any mutation in SMAD4 can cause JP–HHT. Any JP patient with a SMAD4 mutation is, therefore, at risk for the visceral manifestations of HHT and any HHT patient with SMAD4 mutation is at risk for early onset gastrointestinal cancer. In conclusion, a patient who tests positive for any SMAD4 mutation must be considered at risk for the combined syndrome of JP–HHT and monitored accordingly.


PLOS ONE | 2009

Small Deletions of SATB2 Cause Some of the Clinical Features of the 2q33.1 Microdeletion Syndrome

Jill A. Rosenfeld; Blake C. Ballif; Ann Lucas; Edward J. Spence; Cynthia M. Powell; Arthur S. Aylsworth; Beth A. Torchia; Lisa G. Shaffer

Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome. Clinical features of this syndrome include severe mental retardation, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties and cleft or high palate. The commonly deleted region contains at least seven genes. Haploinsufficiency of one of these genes, SATB2, a DNA-binding protein that regulates gene expression, has been implicated as causative in the cleft or high palate of individuals with 2q32q33 microdeletion syndrome. In this study we describe three individuals with smaller microdeletions of this region, within 2q33.1. The deletions ranged in size from 173.1 kb to 185.2 kb and spanned part of SATB2. Review of clinical records showed similar clinical features among these individuals, including severe developmental delay and tooth abnormalities. Two of the individuals had behavioral problems. Only one of the subjects presented here had a cleft palate, suggesting reduced penetrance for this feature. Our results suggest that deletion of SATB2 is responsible for several of the clinical features associated with 2q32q33 microdeletion syndrome.


American Journal of Medical Genetics | 2000

Oculoauriculovertebral Abnormalities in Children of Diabetic Mothers

Amanda Ewart-Toland; Jerome Yankowitz; Alison Winder; Robin Imagire; Victoria A. Cox; Arthur S. Aylsworth; Mahin Golabi

Maternal diabetes is known to have teratogenic effects. Malformations including neural tube defects, caudal dysgenesis, vertebral defects, congenital heart defects, femoral hypoplasia, and renal anomalies are described in infants of diabetic mothers. However, craniofacial anomalies have rarely been reported in such infants. Here we document craniofacial anomalies of patients born to diabetic mothers. We describe two patient populations: individuals evaluated through our genetics services for multiple malformations and individuals identified through a database search in our craniofacial clinic. The first group consists of 14 individuals evaluated in our genetics clinics who were born to diabetic mothers and had craniofacial anomalies. The second group consists of seven individuals who were identified from a craniofacial database search of patients with hemifacial microsomia and who were born to diabetic mothers. Thus, both groups were born to diabetic mothers and had hemifacial microsomia (67%), microtia (52%), hearing loss (43%), epibulbar dermoids (24%), and fused cervical vertebrae (24%). Therefore, the teratogenic effects of maternal diabetes probably include such craniofacial malformations as the oculoauriculovertebral/Goldenhar complex. Infants of diabetic mothers should be evaluated for craniofacial anomalies. Conversely, mothers of infants with craniofacial anomalies should be evaluated for diabetes to aid in counseling concerning cause and recurrence risks.


Human Genetics | 2012

High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44

Blake C. Ballif; Jill A. Rosenfeld; Ryan Traylor; Aaron Theisen; Patricia I. Bader; Roger L. Ladda; Susan Sell; Michelle Steinraths; Urvashi Surti; Marianne McGuire; Shelley Williams; Sandra A. Farrell; James J. Filiano; Rhonda E. Schnur; Lauren B. Coffey; Raymond C. Tervo; Tracy Stroud; Michael Marble; Michael L. Netzloff; Kristen Hanson; Arthur S. Aylsworth; John S. Bamforth; Deepti Babu; Dmitriy Niyazov; J. Britt Ravnan; Roger A. Schultz; Allen N. Lamb; Beth S. Torchia; Bassem A. Bejjani; Lisa G. Shaffer

Microdeletions of 1q43q44 result in a recognizable clinical disorder characterized by moderate to severe intellectual disability (ID) with limited or no expressive speech, characteristic facial features, hand and foot anomalies, microcephaly (MIC), abnormalities (agenesis/hypogenesis) of the corpus callosum (ACC), and seizures (SZR). Critical regions have been proposed for some of the more prominent features of this disorder such as MIC and ACC, yet conflicting data have prevented precise determination of the causative genes. In this study, the largest of pure interstitial and terminal deletions of 1q43q44 to date, we characterized 22 individuals by high-resolution oligonucleotide microarray-based comparative genomic hybridization. We propose critical regions and candidate genes for the MIC, ACC, and SZR phenotypes associated with this microdeletion syndrome. Three cases with MIC had small overlapping or intragenic deletions of AKT3, an isoform of the protein kinase B family. The deletion of only AKT3 in two cases implicates haploinsufficiency of this gene in the MIC phenotype. Likewise, based on the smallest region of overlap among the affected individuals, we suggest a critical region for ACC that contains ZNF238, a transcriptional and chromatin regulator highly expressed in the developing and adult brain. Finally, we describe a critical region for the SZR phenotype which contains three genes (FAM36A, C1ORF199, and HNRNPU). Although ~90% of cases in this study and in the literature fit these proposed models, the existence of phenotypic variability suggests other mechanisms such as variable expressivity, incomplete penetrance, position effects, or multigenic factors could account for additional complexity in some cases.


American Journal of Human Genetics | 2014

Mutations in PIEZO2 Cause Gordon Syndrome, Marden-Walker Syndrome, and Distal Arthrogryposis Type 5

Margaret J. McMillin; Anita E. Beck; Jessica X. Chong; Kathryn M. Shively; Kati J. Buckingham; Heidi I. Gildersleeve; Mariana Aracena; Arthur S. Aylsworth; Pierre Bitoun; John C. Carey; Carol L. Clericuzio; Yanick J. Crow; Cynthia J. Curry; Koenraad Devriendt; David B. Everman; Alan Fryer; Kate Gibson; Maria Luisa Giovannucci Uzielli; John M. Graham; Judith G. Hall; Jacqueline T. Hecht; Randall A. Heidenreich; Jane A. Hurst; Sarosh R. Irani; Ingrid P.C. Krapels; Jules G. Leroy; David Mowat; Gordon T. Plant; Stephen P. Robertson; Elizabeth K. Schorry

Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal-dominant disorder characterized by cleft palate and congenital contractures of the hands and feet. Exome sequencing of five GS-affected families identified mutations in piezo-type mechanosensitive ion channel component 2 (PIEZO2) in each family. Sanger sequencing revealed PIEZO2 mutations in five of seven additional families studied (for a total of 10/12 [83%] individuals), and nine families had an identical c.8057G>A (p.Arg2686His) mutation. The phenotype of GS overlaps with distal arthrogryposis type 5 (DA5) and Marden-Walker syndrome (MWS). Using molecular inversion probes for targeted sequencing to screen PIEZO2, we found mutations in 24/29 (82%) DA5-affected families and one of two MWS-affected families. The presence of cleft palate was significantly associated with c.8057G>A (Fishers exact test, adjusted p value < 0.0001). Collectively, although GS, DA5, and MWS have traditionally been considered separate disorders, our findings indicate that they are etiologically related and perhaps represent variable expressivity of the same condition.


American Journal of Medical Genetics Part A | 2007

Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality.

Christian Kranz; Alice Basinger; Muge Gucsavas-Calikoglu; Liangwu Sun; Cynthia M. Powell; Frederick W. Henderson; Arthur S. Aylsworth; Hudson H. Freeze

In this report, we describe a brother and sister who presented at birth with short‐limb skeletal dysplasia, polyhydramnios, prematurity, and generalized edema. Dysmorphic features included broad nose, thick ears, thin lips, micrognathia, inverted nipples, ulnar deviation at the wrists, spatulate fingers, fifth finger camptodactyly, nail hypoplasia, and talipes equinovarus. Other features included short stature, microcephaly, psychomotor retardation, B‐cell lymphopenic hypogammaglobulinemia, sensorineural deafness, retinal detachment and blindness, intestinal malrotation with poor gastrointestinal motility, persistent hyponatremia, intermittent hypoglycemia, and thrombocytopenia. Cardiac anomalies included PDA, VSD, hypertrophic cardiomyopathy, and arrhythmias. The brother had a small penis with hypospadias, hypoplastic scrotum, and non‐palpable testes. Skeletal findings included absent ossification of cervical vertebral bodies, pubic bones, knee epiphyses, and tali. Both sibs died before age 2 years, one of overwhelming sepsis and the other of cardiorespiratory failure associated with her cardiomyopathy. Metabolic studies showed a type 1 pattern of abnormal serum transferrin glycosylation. Fibroblasts synthesized truncated LLOs, primarily Man7GlcNAc2, suggestive of CDG‐Ig. Both sibs were compound heterozygotes for a novel 301 G > A (G101R) mutation and a previously described 437 G > A (R146Q) mutation in ALG12. Congenital disorders of glycosylation should be considered for children with undiagnosed multi‐system disease including neurodevelopmental delay, skeletal dysplasia, immune deficiency, male genital hypoplasia, and cardiomyopathy.

Collaboration


Dive into the Arthur S. Aylsworth's collaboration.

Top Co-Authors

Avatar

Cynthia M. Powell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kathleen W. Rao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. McLone

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert E. Meyer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy M. George

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge