Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcy C. Speer is active.

Publication


Featured researches published by Marcy C. Speer.


Nature Genetics | 2000

Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23

Kenneth E. White; Wayne E. Evans; Jeffery L.H. O'Riordan; Marcy C. Speer; Michael J. Econs; Bettina Lorenz-Depiereux; Monika Grabowski; Thomas Meitinger; Tim M. Strom

Proper serum phosphate concentrations are maintained by a complex and poorly understood process. Identification of genes responsible for inherited disorders involving disturbances in phosphate homeostasis may provide insight into the pathways that regulate phosphate balance. Several hereditary disorders of isolated phosphate wasting have been described, including X-linked hypophosphataemic rickets (XLH), hypophosphataemic bone disease (HBD), hereditary hypophosphataemic rickets with hypercalciuria (HHRH) and autosomal dominant hypophosphataemic rickets (ADHR). Inactivating mutations of the gene PHEX, encoding a member of the neutral endopeptidase family of proteins, are responsible for XLH (refs 6,7). ADHR (MIM 193100) is characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses. Here we describe a positional cloning approach used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence. We identified missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23. These mutations in patients with ADHR represent the first mutations found in a human FGF gene.


Nature Genetics | 1996

Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2

David W. Johnson; Jonathan Berg; Melanie A. Baldwin; Carol J. Gallione; Ivonne Marondel; S.-J. Yoon; Timothy T. Stenzel; Marcy C. Speer; Margaret A. Pericak-Vance; A. Diamond; Alan E. Guttmacher; Charles E. Jackson; L. Attisano; Raju Kucherlapati; Mary Porteous; Douglas A. Marchuk

Hereditary haemorrhagic telangiectasia, or Osler–Rendu–Weber (ORW) syndrome, is an autosomal dominant vascular dysplasia. So far, two loci have been demonstrated for ORW. Linkage studies established an ORW locus at chromosome 9q3; endoglin was subsequently identified as the ORW1 gene. A second locus, designated ORW2, was mapped to chromosome 12. Here we report a new 4 cM interval for ORW2 that does not overlap with any previously defined. A 1.38–Mb YAC contig spans the entire interval. It includes the activin receptor like kinase 1 gene (ACVRLK1 or ALKI), a member of the serine–threonine kinase receptor family expressed in endothelium. We report three mutations in the coding sequence of the ALK1 gene in those families which show linkage of the ORW phenotype to chromosome 12. Our data suggest a critical role for ALK1 in the control of blood vessel development or repair.


Neurosurgery | 1999

Chiari I malformation redefined : Clinical and radiographic findings for 364 symptomatic patients

Thomas H. Milhorat; Mike W. Chou; Elizabeth M. Trinidad; Roger W. Kula; Menachem Mandell; Chantelle M. Wolpert; Marcy C. Speer

OBJECTIVE Chiari malformations are regarded as a pathological continuum of hindbrain maldevelopments characterized by downward herniation of the cerebellar tonsils. The Chiari I malformation (CMI) is defined as tonsillar herniation of at least 3 to 5 mm below the foramen magnum. Increased detection of CMI has emphasized the need for more information regarding the clinical features of the disorder. METHODS We examined a prospective cohort of 364 symptomatic patients. All patients underwent magnetic resonance imaging of the head and spine, and some were evaluated using CINE-magnetic resonance imaging and other neurodiagnostic tests. For 50 patients and 50 age- and gender-matched control subjects, the volume of the posterior cranial fossa was calculated by the Cavalieri method. The families of 21 patients participated in a study of familial aggregation. RESULTS There were 275 female and 89 male patients. The age of onset was 24.9+/-15.8 years (mean +/- standard deviation), and 89 patients (24%) cited trauma as the precipitating event. Common associated problems included syringomyelia (65%), scoliosis (42%), and basilar invagination (12%). Forty-three patients (12%) reported positive family histories of CMI or syringomyelia. Pedigrees for 21 families showed patterns consistent with autosomal dominant or recessive inheritance. The clinical syndrome of CMI was found to consist of the following: 1) headaches, 2) pseudotumor-like episodes, 3) a Menieres disease-like syndrome, 4) lower cranial nerve signs, and 5) spinal cord disturbances in the absence of syringomyelia. The most consistent magnetic resonance imaging findings were obliteration of the retrocerebellar cerebrospinal fluid spaces (364 patients), tonsillar herniation of at least 5 mm (332 patients), and varying degrees of cranial base dysplasia. Volumetric calculations for the posterior cranial fossa revealed a significant reduction of total volume (mean, 13.4 ml) and a 40% reduction of cerebrospinal fluid volume (mean, 10.8 ml), with normal brain volume. CONCLUSION These data support accumulating evidence that CMI is a disorder of the para-axial mesoderm that is characterized by underdevelopment of the posterior cranial fossa and overcrowding of the normally developed hindbrain. Tonsillar herniation of less than 5 mm does not exclude the diagnosis. Clinical manifestations of CMI seem to be related to cerebrospinal fluid disturbances (which are responsible for headaches, pseudotumor-like episodes, endolymphatic hydrops, syringomyelia, and hydrocephalus) and direct compression of nervous tissue. The demonstration of familial aggregation suggests a genetic component of transmission.


The New England Journal of Medicine | 2011

A common MUC5B promoter polymorphism and pulmonary fibrosis.

Max A. Seibold; Anastasia L. Wise; Marcy C. Speer; Mark P. Steele; Kevin K. Brown; James E. Loyd; Tasha E. Fingerlin; Weiming Zhang; Gunnar Gudmundsson; Steve D. Groshong; Christopher M. Evans; Stavros Garantziotis; Kenneth B. Adler; Burton F. Dickey; Roland M. du Bois; Ivana V. Yang; Aretha Herron; Dolly Kervitsky; Janet Talbert; Cheryl Markin; Joungjoa Park; Anne L. Crews; Susan Slifer; Scott S. Auerbach; Michelle G. Roy; Jia Lin; Corinne E. Hennessy; Marvin I. Schwarz; David A. Schwartz

BACKGROUND The mutations that have been implicated in pulmonary fibrosis account for only a small proportion of the population risk. METHODS Using a genomewide linkage scan, we detected linkage between idiopathic interstitial pneumonia and a 3.4-Mb region of chromosome 11p15 in 82 families. We then evaluated genetic variation in this region in gel-forming mucin genes expressed in the lung among 83 subjects with familial interstitial pneumonia, 492 subjects with idiopathic pulmonary fibrosis, and 322 controls. MUC5B expression was assessed in lung tissue. RESULTS Linkage and fine mapping were used to identify a region of interest on the p-terminus of chromosome 11 that included gel-forming mucin genes. The minor-allele of the single-nucleotide polymorphism (SNP) rs35705950, located 3 kb upstream of the MUC5B transcription start site, was present at a frequency of 34% among subjects with familial interstitial pneumonia, 38% among subjects with idiopathic pulmonary fibrosis, and 9% among controls (allelic association with familial interstitial pneumonia, P=1.2×10(-15); allelic association with idiopathic pulmonary fibrosis, P=2.5×10(-37)). The odds ratios for disease among subjects who were heterozygous and those who were homozygous for the minor allele of this SNP were 6.8 (95% confidence interval [CI], 3.9 to 12.0) and 20.8 (95% CI, 3.8 to 113.7), respectively, for familial interstitial pneumonia and 9.0 (95% CI, 6.2 to 13.1) and 21.8 (95% CI, 5.1 to 93.5), respectively, for idiopathic pulmonary fibrosis. MUC5B expression in the lung was 14.1 times as high in subjects who had idiopathic pulmonary fibrosis as in those who did not (P<0.001). The variant allele of rs35705950 was associated with up-regulation in MUC5B expression in the lung in unaffected subjects (expression was 37.4 times as high as in unaffected subjects homozygous for the wild-type allele, P<0.001). MUC5B protein was expressed in lesions of idiopathic pulmonary fibrosis. CONCLUSIONS A common polymorphism in the promoter of MUC5B is associated with familial interstitial pneumonia and idiopathic pulmonary fibrosis. Our findings suggest that dysregulated MUC5B expression in the lung may be involved in the pathogenesis of pulmonary fibrosis. (Funded by the National Heart, Lung, and Blood Institute and others.).


Neurology | 1988

Duchenne muscular dystrophy High frequency of deletions

R. J. Bartlett; Margaret A. Pericak-Vance; James Koh; Larry H. Yamaoka; J. C. Chen; W.-Y. Hung; Marcy C. Speer; M. C. Wapenaar; G.J.B. van Ommen; Egbert Bakker; P.L. Pearson; Raymond S. Kandt; Teepu Siddique; John R. Gilbert; James E. Lee; M. Sirotkin-Roses; A. D. Roses

DNA probes are available for Duchenne muscular dystrophy (DMD) carrier detection and prenatal diagnosis. With probes for about 25% of the proximal portion of the gene, we found the proximal probes detected deletions in 23% of nonselected DMD boys, while a single distal probe detected 17% more as deletions. The combined percentage was 39% for all probes tested. Prenatal diagnosis and carrier detection are more accurate if deletions are mapped rather than by use of restriction fragment length polymorphism analysis. The effort involved in screening all affected boys for deletions is considerably less, and provides an accurate genetic marker for subsequent prenatal diagnosis in the family and prospective counseling for female relatives. It seems likely that, once the entire gene (cDNA) is available for screening, most DMD boys will show deletions.


American Journal of Human Genetics | 1997

Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23.

David N. Messina; Marcy C. Speer; Margaret A. Pericak-Vance; Elizabeth M. McNally

Inherited cardiomyopathies may arise from mutations in genes that are normally expressed in both heart and skeletal muscle and therefore may be accompanied by skeletal muscle weakness. Phenotypically, patients with familial dilated cardiomyopathy (FDC) show enlargement of all four chambers of the heart and develop symptoms of congestive heart failure. Inherited cardiomyopathies may also be accompanied by cardiac conduction-system defects that affect the atrioventricular node, resulting in bradycardia. Several different chromosomal regions have been linked with the development of autosomal dominant FDC, but the gene defects in these disorders remain unknown. We now characterize an autosomal dominant disorder involving dilated cardiomyopathy, cardiac conduction-system disease, and adult-onset limb-girdle muscular dystrophy (FDC, conduction disease, and myopathy [FDC-CDM]). Genetic linkage was used to exclude regions of the genome known to be linked to dilated cardiomyopathy and muscular dystrophy phenotypes and to confirm genetic heterogeneity of these disorders. A genomewide scan identified a region on the long arm of chromosome 6 that is significantly associated with the presence of myopathy (D6S262; maximum LOD score [Z(max)] 4.99 at maximum recombination fraction [theta(max)] .00), identifying FDC-CDM as a genetically distinct disease. Haplotype analysis refined the interval containing the genetic defect, to a 3-cM interval between D6S1705 and D6S1656. This haplotype analysis excludes a number of striated muscle-expressed genes present in this region, including laminin alpha2, laminin alpha4, triadin, and phospholamban.


Experimental Neurology | 1988

Genetic linkage studies in Alzheimer's disease families

Margaret A. Pericak-Vance; Larry H. Yamaoka; Carol Haynes; Marcy C. Speer; Jonathan L. Haines; Perry C. Gaskell; W.-Y. Hung; C. M. Clark; A. Heyman; James A. Trofatter; J. P. Eisenmenger; John R. Gilbert; Jeehyun Lee; Mark J. Alberts; Deborah V. Dawson; R. J. Bartlett; Nancy Earl; Teepu Siddique; J. M. Vance; P. M. Conneall; A. D. Roses

Alzheimers disease is a devastating neurological disorder and the leading cause of dementia among the elderly. Recent studies have localized the gene for familial Alzheimers disease to chromosome 21 in a series of early onset AD families (mean age of onset less than 60). Familial late onset AD (mean age of onset greater than 60) is a more common clinical form of the disorder. Thirteen families with multiply affected Alzheimers disease family members were identified and sampled. Ten of these families were of the late onset Alzheimers disease type. Simulation studies were used to evaluate the usefulness of these pedigrees in linkage studies in familial Alzheimers disease. Linkage studies undertaken to test the localization of both early onset and late onset Alzheimers disease families to chromosome 21 failed to establish linkage and excluded linkage from a large portion of the region where the early onset Alzheimers disease gene was localized. These findings suggest that more than one etiology may exist for familial Alzheimers disease and indicate the need for continued screening of the genome in familial Alzheimers disease families.


Experimental Neurology | 1989

Linkage of Charcot-Marie-Tooth neuropathy type 1a to chromosome 17

Jeffery M. Vance; Garth A. Nicholson; Larry H. Yamaoka; Jeffrey M. Stajich; C. S. Stewart; Marcy C. Speer; W.-Y. Hung; A. D. Roses; David F. Barker; Margaret A. Pericak-Vance

Charcot-Marie-Tooth disease Type 1 (CMT) is an inherited neuropathy with known genetic heterogeneity, with at least one autosomal dominant form (CMT Type 1b) linked to the Duffy region of chromosome 1. Autosomal dominant families not demonstrating linkage to the Duffy blood group marker have been designated CMT Type 1a. We report linkage of six CMT Type 1a families to the chromosome 17 markers EW301 (D17S58) and pA10-41 (D17S71) with maximum LOD scores of zeta = 10.49 at theta (maximum recombination fraction) = 0.05 and zeta = 7.36 at theta = 0.06, respectively.


American Journal of Medical Genetics | 1999

Genetic mapping of a novel familial form of infantile hemangioma

Jeffrey W. Walter; Francine Blei; Jennifer L. Anderson; Seth J. Orlow; Marcy C. Speer; Douglas A. Marchuk

Infantile hemangiomas are the most common tumor of infancy, occurring with an incidence of up to 10% of all births. They are benign but highly proliferative lesions involving aberrant localized growth of capillary endothelium. Although most hemangiomas occur sporadically and as single lesions, or in conjunction with pleiotropic genetic syndromes, we have previously identified six kindreds where hemangiomas appear to segregate as an autosomal dominant trait with high penetrance. Four such families contain affected individuals in three or more generations. In the current study, blood samples from five of these families were collected and used in a whole genome linkage search at 10-cM resolution. We established evidence for linkage to 5q in three families, and evidence for locus heterogeneity. The three 5q-linked families were further genotyped to generate haplotype information and narrow the candidate interval. Based on recombination breakpoint analysis, the interval exists between markers D5S2490 and D5S408, spanning 55 cM, and corresponding to 5q31-33. Using information from affected and unaffected individuals, the interval spans 38 cM between markers D5S1469 and D5S211. Three candidate genes involved with blood vessel growth map to this region: fibroblast growth factor receptor-4 (FGFR4), platelet-derived growth factor receptor-beta (PDG-FRB), and fms-related tyrosine kinase-4 (FLT4). The genes and gene products associated with familial hemangiomas may be involved somatically in the more common sporadic cases.


Environmental Health Perspectives | 2006

Neural tube defects and folate pathway genes : Family-based association tests of gene-gene and gene-environment interactions

Abee L. Boyles; Ashley V. Billups; Kristen L. Deak; Deborah G. Siegel; Lorraine Mehltretter; Susan Slifer; Alexander G. Bassuk; John A. Kessler; Michael C. Reed; H. Frederik Nijhout; Timothy M. George; David S. Enterline; John R. Gilbert; Marcy C. Speer; Joanna Aben; A. Alysworth; Joann Bodurtha; Timothy Brei; Connie Buran; Bermans J. Iskandar; Joy Ito; Nicole Lasarsky; Philip Mack; Elli Meeropol; Joanne Mackey; David G. McLone; W. J. Oakes; Cynthia M. Powell; Kathleen Sawin; Michael Walker

Background Folate metabolism pathway genes have been examined for association with neural tube defects (NTDs) because folic acid supplementation reduces the risk of this debilitating birth defect. Most studies addressed these genes individually, often with different populations providing conflicting results. Objectives Our study evaluates several folate pathway genes for association with human NTDs, incorporating an environmental cofactor: maternal folate supplementation. Methods In 304 Caucasian American NTD families with myelomeningocele or anencephaly, we examined 28 polymorphisms in 11 genes: folate receptor 1, folate receptor 2, solute carrier family 19 member 1, transcobalamin II, methylenetetrahydrofolate dehydrogenase 1, serine hydroxymethyl-transferase 1, 5,10-methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homo-cysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine methyltransferase (BHMT), and cystathionine-beta-synthase. Results Only single nucleotide polymorphisms (SNPs) in BHMT were significantly associated in the overall data set; this significance was strongest when mothers took folate-containing nutritional supplements before conception. The BHMT SNP rs3733890 was more significant when the data were stratified by preferential transmission of the MTHFR rs1801133 thermolabile T allele from parent to offspring. Other SNPs in folate pathway genes were marginally significant in some analyses when stratified by maternal supplementation, MTHFR, or BHMT allele transmission. Conclusions BHMT rs3733890 is significantly associated in our data set, whereas MTHFR rs1801133 is not a major risk factor. Further investigation of folate and methionine cycle genes will require extensive SNP genotyping and/or resequencing to identify novel variants, inclusion of environmental factors, and investigation of gene–gene interactions in large data sets.

Collaboration


Dive into the Marcy C. Speer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy M. George

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur S. Aylsworth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge