Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arturo J. Cardounel is active.

Publication


Featured researches published by Arturo J. Cardounel.


Circulation Research | 2008

Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure.

Dmitry Terentyev; Inna Györke; Andriy E. Belevych; Radmila Terentyeva; Arun Sridhar; Yoshinori Nishijima; Esperanza Carcache de Blanco; Savita Khanna; Chandan K. Sen; Arturo J. Cardounel; Cynthia A. Carnes; Sandor Gyorke

Abnormal cardiac ryanodine receptor (RyR2) function is recognized as an important factor in the pathogenesis of heart failure (HF). However, the specific molecular causes underlying RyR2 defects in HF remain poorly understood. In the present study, we used a canine model of chronic HF to test the hypothesis that the HF-related alterations in RyR2 function are caused by posttranslational modification by reactive oxygen species generated in the failing heart. Experimental approaches included imaging of cytosolic ([Ca2+]c) and sarcoplasmic reticulum (SR) luminal Ca2+ ([Ca2+]SR) in isolated intact and permeabilized ventricular myocytes and single RyR2 channel recording using the planar lipid bilayer technique. The ratio of reduced to oxidized glutathione, as well as the level of free thiols on RyR2 decreased markedly in failing versus control hearts consistent with increased oxidative stress in HF. RyR2-mediated SR Ca2+ leak was significantly enhanced in permeabilized myocytes, resulting in reduced [Ca2+]SR in HF compared to control cells. Both SR Ca2+ leak and [Ca2+]SR were partially normalized by treating HF myocytes with reducing agents. Conversely, oxidizing agents accelerated SR Ca2+ leak and decreased [Ca2+]SR in cells from normal hearts. Moreover, exposure to antioxidants significantly improved intracellular Ca2+-handling parameters in intact HF myocytes. Single RyR2 channel activity was significantly higher in HF versus control because of increased sensitivity to activation by luminal Ca2+ and was partially normalized by reducing agents through restoring luminal Ca2+ sensitivity oxidation of control RyR2s enhanced their luminal Ca2+ sensitivity, thus reproducing the HF phenotype. These findings suggest that redox modification contributes to abnormal function of RyR2s in HF, presenting a potential therapeutic target for treating HF.


Journal of Biological Chemistry | 2007

Evidence for the Pathophysiological Role of Endogenous Methylarginines in Regulation of Endothelial NO Production and Vascular Function

Arturo J. Cardounel; Hongmei Cui; Alexandre Samouilov; Wesley Johnson; Patrick Kearns; Ah Lim Tsai; Vladomir Berka; Jay L. Zweier

In endothelium, NO is derived from endothelial NO synthase (eNOS)-mediated l-arginine oxidation. Endogenous guanidinomethylated arginines (MAs), including asymmetric dimethylarginine (ADMA) and NG-methyl-l-arginine (l-NMMA), are released in cells upon protein degradation and are competitive inhibitors of eNOS. However, it is unknown whether intracellular MA concentrations reach levels sufficient to regulate endothelial NO production. Therefore, the dose-dependent effects of ADMA and l-NMMA on eNOS function were determined. Kinetic studies demonstrated that the Km for l-arginine is 3.14 μm with a Vmax of 0.14 μmol mg–1 min–1, whereas Ki values of 0.9 μm and 1.1 μm were determined for ADMA and l-NMMA, respectively. EPR studies of NO production from purified eNOS demonstrated that, with a physiological 100 μm level of l-arginine, MA levels of >10μm were required for significant eNOS inhibition. Dose-dependent inhibition of NO formation in endothelial cells was observed with extracellular MA concentrations as low 5 μm. Similar effects were observed in isolated vessels where 5 μm ADMA inhibited vascular relaxation to acetylcholine. MA uptake studies demonstrated that ADMA and l-NMMA accumulate in endothelial cells with intracellular levels greatly exceeding extracellular concentrations. l-Arginine/MA ratios were correlated with cellular NO production. Although normal physiological levels of MAs do not significantly inhibit NOS, a 3- to 9-fold increase, as reported under disease conditions, would exert prominent inhibition. Using a balloon model of vascular injury, ∼4-fold increases in cellular MAs were observed, and these caused prominent impairment of vascular relaxation. Thus, MAs are critical mediators of vascular dysfunction following vascular injury.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4

Cristian Dumitrescu; Roberto Biondi; Yong Xia; Arturo J. Cardounel; Lawrence J. Druhan; Giuseppe Ambrosio; Jay L. Zweier

Coronary vasodilation is impaired in the postischemic heart with a loss of endothelial nitric oxide synthase (eNOS) activity, but the mechanisms underlying ischemia-induced eNOS dysfunction are not understood. For nitric oxide (NO) synthesis, eNOS requires the redox-sensitive cofactor tetrahydrobiopterin (BH4); however, the role of BH4 in ischemia-induced endothelial dysfunction remains unknown. Therefore, isolated rat hearts were subjected to varying durations of ischemia, and the alterations in NOS-dependent vasodilation were measured and correlated with assays of eNOS activity and cardiac BH4 concentrations. Ischemia time-dependently decreased cardiac BH4 content with 85, 95, or 97% irreversible degradation after 30, 45, or 60 min of ischemia, respectively. Paralleling the decreases in BH4, reductions of eNOS activity were seen of 58, 86, or 92%, and NOS-derived superoxide production was greatly increased. Addition of 10 μM BH4 enhanced eNOS activity in nonischemic hearts and partially restored activity after ischemia. It also suppressed NOS-derived superoxide production. Impaired coronary flow during postischemic reperfusion was improved by BH4 infusion. Thus, BH4 depletion contributes to postischemic eNOS dysfunction, and BH4 treatment is effective in partial restoration of endothelium-dependent coronary flow. Supplementation of BH4 may therefore be an important therapeutic approach to reverse endothelial dysfunction in postischemic tissues.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Air Pollution Exposure Potentiates Hypertension Through Reactive Oxygen Species-Mediated Activation of Rho/ROCK

Qinghua Sun; Peibin Yue; Zhekang Ying; Arturo J. Cardounel; Robert D. Brook; Robert B. Devlin; Jing-Shiang Hwang; Jay L. Zweier; Lung Chi Chen; Sanjay Rajagopalan

Objective—Fine particulate matter <2.5 &mgr;m (PM2.5) has been implicated in vasoconstriction and potentiation of hypertension in humans. We investigated the effects of short-term exposure to PM2.5 in the angiotensin II (AII) infusion model. Methods and Results—Sprague-Dawley rats were exposed to PM2.5 or filtered air (FA) for 10 weeks. At week 9, minipumps containing AII were implanted and the responses studied over a week. Mean concentration of PM2.5 inside the chamber was 79.1±7.4 &mgr;g/m3. After AII infusion, mean arterial pressure was significantly higher in PM2.5-AII versus FA-AII group. Aortic vasoconstriction to phenylephrine was potentiated with exaggerated relaxation to the Rho-kinase (ROCK) inhibitor Y-27632 and increase in ROCK-1 mRNA levels in the PM2.5-AII group. Superoxide (O2·−) production in aorta was increased in the PM2.5-AII compared to the FA group, inhibitable by apocynin and L-NAME with coordinate upregulation of NAD(P)H oxidase subunits p22phox and p47phox and depletion of tetrahydrobiopterin. In vitro exposure to ultrafine particles (UFP) and PM2.5 was associated with an increase in ROCK activity, phosphorylation of myosin light chain, and myosin phosphatase target subunit (MYPT1). Pretreatment with the nonspecific antioxidant N-Acetylcysteine and the Rho kinase inhibitors (Fasudil and Y-27632) prevented MLC and MYPT-1 phosphorylation by UFP suggesting a O2·−-mediated mechanism for PM2.5 and UFP effects. Conclusions—Short-term air pollution exaggerates hypertension through O2·−-mediated upregulation of the Rho/ROCK pathway.


Cardiovascular Research | 2009

Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death

Andriy E. Belevych; Dmitry Terentyev; Serge Viatchenko-Karpinski; Radmila Terentyeva; Arun Sridhar; Yoshinori Nishijima; Lance D. Wilson; Arturo J. Cardounel; Kenneth R. Laurita; Cynthia A. Carnes; George E. Billman; Sandor Gyorke

AIMS Although cardiac alternans is a known predictor of lethal arrhythmias, its underlying causes remain largely undefined in disease settings. The potential role of, and mechanisms responsible for, beat-to-beat alternations in the amplitude of systolic Ca(2+) transients (Ca(2+) alternans) was investigated in a canine post-myocardial infarction (MI) model of sudden cardiac death (SCD). METHODS AND RESULTS Post-MI dogs had preserved left ventricular (LV) function and susceptibility to ventricular fibrillation (VF) during exercise. LV wedge preparations from VF dogs were more susceptible to action potential (AP) alternans and the frequency-dependence of Ca(2+) alternans was shifted towards slower rates in myocytes isolated from VF dogs relative to controls. In both groups of cells, cytosolic Ca(2+) transients ([Ca(2+)](c)) alternated in phase with changes in diastolic Ca(2+) in sarcoplasmic reticulum ([Ca(2+)](SR)), but the dependence of [Ca(2+)](c) amplitude on [Ca(2+)](SR) was steeper in VF cells. Abnormal ryanodine receptor (RyR) function in VF cells was indicated by increased fractional Ca(2+) release for a given amplitude of Ca(2+) current and elevated diastolic RyR-mediated SR Ca(2+) leak. SR Ca(2+) uptake activity did not differ between VF and control cells. VF myocytes had an increased rate of reactive oxygen species production and increased RyR oxidation. Treatment of VF myocytes with reducing agents normalized parameters of Ca(2+) handling and shifted the threshold of Ca(2+) alternans to higher frequencies. CONCLUSION Redox modulation of RyRs promotes generation of Ca(2+) alternans by enhancing the steepness of the Ca(2+) release-load relationship and thereby providing a substrate for post-MI arrhythmias.


Biochemistry | 2008

Regulation of eNOS-derived superoxide by endogenous methylarginines.

Lawrence J. Druhan; Scott P. Forbes; Arthur J. Pope; Chun-An Chen; Jay L. Zweier; Arturo J. Cardounel

The endogenous methylarginines, asymmetric dimethylarginine (ADMA) and N (G)-monomethyl- l-arginine (L-NMMA) regulate nitric oxide (NO) production from endothelial NO synthase (eNOS). Under conditions of tetrahydrobiopterin (BH 4) depletion eNOS also generates (*)O 2 (-); however, the effects of methylarginines on eNOS-derived (*)O 2 (-) generation are poorly understood. Therefore, using electron paramagnetic resonance spin trapping techniques we measured the dose-dependent effects of ADMA and L-NMMA on (*)O 2 (-) production from eNOS under conditions of BH 4 depletion. In the absence of BH 4, ADMA dose-dependently increased NOS-derived (*)O 2 (-) generation, with a maximal increase of 151% at 100 microM ADMA. L-NMMA also dose-dependently increased NOS-derived (*)O 2 (-), but to a lesser extent, demonstrating a 102% increase at 100 microM L-NMMA. Moreover, the native substrate l-arginine also increased eNOS-derived (*)O 2 (-), exhibiting a similar degree of enhancement as that observed with ADMA. Measurements of NADPH consumption from eNOS demonstrated that binding of either l-arginine or methylarginines increased the rate of NADPH oxidation. Spectrophotometric studies suggest, just as for l-arginine and L-NMMA, the binding of ADMA shifts the eNOS heme to the high-spin state, indicative of a more positive heme redox potential, enabling enhanced electron transfer from the reductase to the oxygenase site. These results demonstrate that the methylarginines can profoundly shift the balance of NO and (*)O 2 (-) generation from eNOS. These observations have important implications with regard to the therapeutic use of l-arginine and the methylarginine-NOS inhibitors in the treatment of disease.


Pharmacological Research | 2009

Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production.

Arthur J. Pope; Kanchana Karuppiah; Arturo J. Cardounel

There is abundant evidence that the endothelium plays a crucial role in the maintenance of vascular tone and structure. One of the major endothelium-derived vasoactive mediators is nitric oxide (NO), formed in healthy vascular endothelium from the amino acid precursor l-arginine. Endothelial dysfunction is increased by various cardiovascular risk factors, metabolic diseases, and systemic or local inflammation. One mechanism that has been implicated in the development of endothelial dysfunction is the presence of elevated levels of asymmetric dimethylarginine (ADMA). Free ADMA, which is formed during proteolysis, is actively degraded by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH) which catalyzes the conversion of ADMA to citrulline and dimethylamine. It has been estimated that more than 70% of ADMA is metabolized by DDAH (Achan et al. [1]). Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA mediated eNOS impairment. However, recent studies suggest that DDAH may regulate eNOS activity and endothelial function through both ADMA-dependent and -independent mechanisms. In this regard, elevated plasma ADMA may serve as a marker of impaired methylarginine metabolism and the pathology previously attributed to elevated ADMA may be manifested, at least in part, through altered activity of the enzymes involved in ADMA regulation, specifically DDAH and PRMT.


Journal of Biological Chemistry | 2009

Role of Dimethylarginine Dimethylaminohydrolases in the Regulation of Endothelial Nitric Oxide Production

Arthur J. Pope; Kanchana Karrupiah; Patrick Kearns; Yong Xia; Arturo J. Cardounel

Reduced NO is a hallmark of endothelial dysfunction, and among the mechanisms for impaired NO synthesis is the accumulation of the endogenous nitric-oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Free ADMA is actively metabolized by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH), which catalyzes the conversion of ADMA to citrulline. Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA-mediated endothelial nitric-oxide synthase impairment. Two isoforms of DDAH have been identified; however, it is presently unclear which is responsible for endothelial ADMA metabolism and NO regulation. The current study investigated the effects of both DDAH-1 and DDAH-2 in the regulation of methylarginines and endothelial NO generation. Results demonstrated that overexpression of DDAH-1 and DDAH-2 increased endothelial NO by 24 and 18%, respectively. Moreover, small interfering RNA-mediated down-regulation of DDAH-1 and DDAH-2 reduced NO bioavailability by 27 and 57%, respectively. The reduction in NO production following DDAH-1 gene silencing was associated with a 48% reduction in l-Arg/ADMA and was partially restored with l-Arg supplementation. In contrast, l-Arg/ADMA was unchanged in the DDAH-2-silenced cells, and l-Arg supplementation had no effect on NO. These results clearly demonstrate that DDAH-1 and DDAH-2 manifest their effects through different mechanisms, the former of which is largely ADMA-dependent and the latter ADMA-independent. Overall, the present study demonstrates an important regulatory role for DDAH in the maintenance of endothelial function and identifies this pathway as a potential target for treating diseases associated with decreased NO bioavailability.


Inflammatory Bowel Diseases | 2006

ADOA3R as a Therapeutic Target in Experimental Colitis: Proof by Validated High-density Oligonucleotide Microarray Analysis

Jorge Guzman; Jun Ge Yu; Zacharias E. Suntres; Andrey Bozarov; Helen J. Cooke; Najma H. Javed; Herbert Auer; Jeff Palatini; Hamdy H. Hassanain; Arturo J. Cardounel; Asad Javed; Iveta Grants; Jacqueline E. Wunderlich; Fievos L. Christofi

&NA; Adenosine A3 receptors (ADOA3Rs) are emerging as novel purinergic targets for treatment of inflammatory diseases. Our goal was to assess the protective effect of the ADOA3R agonist N(6)‐(3‐iodobenzyl)‐adenosine‐5‐N‐methyluronamide (IB‐MECA) on gene dysregulation and injury in a rat chronic model of 2,4,6‐trinitrobenzene sulfonic acid (TNBS)‐induced colitis. It was necessary to develop and validate a microarray technique for testing the protective effects of purine‐based drugs in experimental inflammatory bowel disease. High‐density oligonucleotide microarray analysis of gene dysregulation was assessed in colons from normal, TNBS‐treated (7 days), and oral IB‐MECA‐treated rats (1.5 mg/kg b.i.d.) using a rat RNU34 neural GeneChip of 724 genes and SYBR green polymerase chain reaction. Analysis included clinical evaluation, weight loss assessment, and electron paramagnetic resonance imaging/spin‐trap monitoring of free radicals. Remarkable colitis‐induced gene dysregulation occurs in the most exceptional cluster of 5.4% of the gene pool, revealing 2 modes of colitis‐related dysregulation. Downregulation occurs in membrane transporter, mitogen‐activated protein (MAP) kinase, and channel genes. Upregulation occurs in chemokine, cytokine/inflammatory, stress, growth factor, intracellular signaling, receptor, heat shock protein, retinoid metabolism, neural, remodeling, and redox‐sensitive genes. Oral IB‐MECA prevented dysregulation in 92% of these genes, histopathology, gut injury, and weight loss. IB‐MECA or adenosine suppressed elevated free radicals in ex vivo inflamed gut. Oral IB‐MECA blocked the colitis‐induced upregulation (≤20‐fold) of Bzrp, P2X1R, P2X4R, P2X7R, P2Y2R, P2Y6R, and A2aR/A2bR but not A1R or A3R genes or downregulated P2X2R, P2Y1R, and P2Y4R. Real‐time SYBR green polymerase chain reaction validated gene chip data for both induction of colitis and treatment with IB‐MECA for >90% of genes tested (33 of 37 genes). We conclude that our validated high‐density oligonucleotide microarray analysis is a powerful technique for molecular gene dysregulation studies to assess the beneficial effects of purine‐based or other drugs in experimental colitis. ADOA3R is new potential therapeutic target for inflammatory bowel disease.


Circulation Research | 2009

Insulin-Like Growth Factor Binding Protein-3 Mediates Vascular Repair by Enhancing Nitric Oxide Generation

Jennifer L. Kielczewski; Yagna P. R. Jarajapu; E. L. McFarland; Jun Cai; Aqeela Afzal; Sergio Li Calzi; Kyung Hee Chang; Todd A. Lydic; Lynn C. Shaw; Julia V. Busik; Jeffrey A. Hughes; Arturo J. Cardounel; Kenneth Wilson; Timothy J. Lyons; Michael E. Boulton; Robert N. Mames; Tailoi Chan-Ling; Maria B. Grant

Rationale: Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury. Objective: To examine the mechanism of IGFBP-3–mediated repair following vascular injury. Methods and Results: We used 2 complementary vascular injury models: laser occlusion of retinal vessels in adult green fluorescent protein (GFP) chimeric mice and oxygen-induced retinopathy in mouse pups. Intravitreal injection of IGFBP-3–expressing plasmid into lasered GFP chimeric mice stimulated homing of EPCs, whereas reversing ischemia induced increases in macrophage infiltration. IGFBP-3 also reduced the retinal ceramide/sphingomyelin ratio that was increased following laser injury. In the OIR model, IGFBP-3 prevented cell death of resident vascular endothelial cells and EPCs, while simultaneously increasing astrocytic ensheathment of vessels. For EPCs to orchestrate repair, these cells must migrate into ischemic tissue. This migratory ability is mediated, in part, by endogenous NO generation. Thus, we asked whether the migratory effects of IGFBP-3 were attributable to stimulation of NO generation. IGFBP-3 increased endothelial NO synthase expression in human EPCs leading to NO generation. IGFBP-3 exposure also led to the redistribution of vasodilator-stimulated phosphoprotein, an NO regulated protein critical for cell migration. IGFBP-3–mediated NO generation required high-density lipoprotein receptor activation and stimulation of phosphatidylinositol 3-kinase/Akt pathway. Conclusion: These studies support consideration of IGFBP-3 as a novel agent to restore the function of injured vasculature and restore NO generation.

Collaboration


Dive into the Arturo J. Cardounel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge