Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Govindasamy Ilangovan is active.

Publication


Featured researches published by Govindasamy Ilangovan.


Free Radical Biology and Medicine | 2003

Novel particulate spin probe for targeted determination of oxygen in cells and tissues.

Ramasamy P. Pandian; Narasimham L. Parinandi; Govindasamy Ilangovan; Jay L. Zweier; Periannan Kuppusamy

The synthesis and characterization of a new lithium octa-n-butoxy-substituted naphthalocyanine radical probe (LiNc-BuO) and its use in the determination of concentration of oxygen (oximetry) by electron paramagnetic resonance (EPR) spectroscopy are reported. The probe is synthesized as a needle-shaped microcrystalline particulate. The particulate shows a single-line EPR spectrum that is highly exchange-narrowed with a line-width of 210 mG. The EPR line-width is sensitive to molecular oxygen showing a linear relationship between the line-width and concentration of oxygen (pO(2)) with a sensitivity of 8.5 mG/mmHg. We studied a variety of physicochemical and biological properties of LiNc-BuO particulates to evaluate the suitability of the probe for in vivo oximetry. The probe is unaffected by biological oxidoreductants, stable in tissues for several months, and can be successfully internalized in cells. We used this probe to monitor changes in concentration of oxygen in the normal muscle and RIF-1 tumor tissue of mice as a function of tumor growth. The data showed a rapid decrease in the tumor pO(2) with increase of tumor volume. Human arterial smooth muscle cells, upon internalization of the LiNc-BuO probe, showed a marked oxygen gradient across the cell membrane. In summary, the newly synthesized octa-n-butoxy derivative of lithium naphthalocyanine has unique properties that are useful for determining oxygen concentration in chemical and biological systems by EPR spectroscopy and also for magnetic tagging of cells.


Journal of Biological Chemistry | 2011

Forced Expression of Heat Shock Protein 27 (Hsp27) Reverses P-Glycoprotein (ABCB1)-mediated Drug Efflux and MDR1 Gene Expression in Adriamycin-resistant Human Breast Cancer Cells

Ragu Kanagasabai; Karthikeyan Krishnamurthy; Lawrence J. Druhan; Govindasamy Ilangovan

Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G2/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.


American Journal of Physiology-heart and Circulatory Physiology | 2008

HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells : p21 upregulation and G2/M phase cell cycle arrest

C. D. Venkatakrishnan; Kathy Dunsmore; Hector R. Wong; Sashwathi Roy; Chandan K. Sen; Altaf Wani; Jay L. Zweier; Govindasamy Ilangovan

Treatment of cancer patients with anthracyclin-based chemotherapeutic drugs induces congestive heart failure by a mechanism involving p53. However, it is not known how p53 aggravates doxorubicin (Dox)-induced toxicity in the heart. On the basis of in vitro acute toxicity assay using heat shock factor-1 (HSF-1) wild-type (HSF-1(+/+)) and HSF-1-knockout (HSF-1(-/-)) mouse embryonic fibroblasts and neonatal rat cardiomyocyte-derived H9c2 cells, we demonstrate a novel mechanism whereby heat shock protein 27 (HSP27) regulates transcriptional activity of p53 in Dox-treated cells. Inhibition of p53 by pifithrin-alpha (PFT-alpha) provided different levels of protection from Dox that correlate with HSP27 levels in these cells. In HSF-1(+/+) cells, PFT-alpha attenuated Dox-induced toxicity. However, in HSF-1(-/-) cells (which express a very low level of HSP27 compared with HSF-1(+/+) cells), there was no such attenuation, indicating an important role of HSP27 in p53-dependent cell death. On the other hand, immunoprecipitation of p53 was found to coimmunoprecipitate HSP27 and vice versa (confirmed by Western blotting and matrix-assisted laser desorption/ionization time of flight), demonstrating HSP27 binding to p53 in Dox-treated cells. Moreover, upregulation of p21 was observed in HSF-1(+/+) and H9c2 cells, indicating that HSP27 binding transactivates p53 and enhances transcription of p21 in response to Dox treatment. Further analysis with flow cytometry showed that increased expression of p21 results in G(2)/M phase cell cycle arrest in Dox-treated cells. Overall, HSP27 binding to p53 attenuated the cellular toxicity by upregulating p21 and prevented cell death.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice.

Kaushik Vedam; Yoshinori Nishijima; Lawrence J. Druhan; Mahmood Khan; Nicanor I. Moldovan; Jay L. Zweier; Govindasamy Ilangovan

Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp25 in chemotherapeutic-induced heart failure has not been investigated. Using HSF-1 wild-type (HSF-1(+/+)) and knock-out (HSF-1(-/-)) mice, we tested the hypothesis that activation of HSF-1 plays a role in the development of Dox-induced heart failure. Higher levels of Hsp25 and its phosphorylated forms were found in the failing hearts of Dox-treated HSF-1(+/+) mice. More than twofold increase in Hsp25 mRNA level was found in Dox-treated hearts. Proteomic analysis showed that there is accumulation and aggregation of Hsp25 in Dox-treated failing hearts. Additionally, Hsp25 was found to coimmunoprecipitate with p53 and vice versa. Further studies indicated that the Dox-induced higher levels of Hsp25 transactivated p53 leading to higher levels of the pro-apoptotic protein Bax, but other p53-related proteins remained unaltered. Moreover, HSF-1(-/-) mice showed significantly reduced Dox-induced heart failure and higher survival rate, and there was no change in Bax upon treating with Dox in HSF-1(-/-) mice. From these results we propose a novel mechanism for Dox-induced heart failure: increased expression of Hsp25 because of oxidant-induced activation of HSF-1 transactivates p53 to increase Bax levels, which leads to heart failure.


Magnetic Resonance in Medicine | 2004

EPR oximetry in the beating heart: Myocardial oxygen consumption rate as an index of postischemic recovery

Govindasamy Ilangovan; Thibaut Liebgott; Vijay Kumar Kutala; Sergey Petryakov; Jay L. Zweier; Periannan Kuppusamy

Oxygen plays a critical role in the pathophysiology of myocardial injury during both ischemia and subsequent reperfusion (I/R). Thus, oxygen concentration is an important variable to measure during I/R. In the present work, electron paramagnetic resonance (EPR)‐based oximetry was used to measure the oxygen concentration during a series of I/R episodes and oxygenation levels were correlated with the contractile and hemodynamic functions of the heart. A custom‐developed electronically tunable surface coil resonator working at 1.1 GHz was used to determine tissue pO2 in the beating heart. Microcrystalline particulate of lithium phthalocyanine was used as an EPR oximetry probe. Isolated and perfused rat hearts were subjected to 1 or 3 hr durations of preischemic perfusion, followed by 15‐min I/R cycles. In hearts perfused for 3 hr prior to 15‐min I/R cycles, the myocardial pO2 decreased gradually on subsequent reperfusions of three successive I/R cycles. However, in hearts perfused for 1 hr there was almost 100% recovery of myocardial pO2 in all three I/R cycles. The extent of oxygenation recovered in each reperfusion cycle correlated with the recovery of hemodynamic and contractile function. The results also showed that the oxygen consumption rate of the heart at the end of each I/R episode decreased in direct proportion to the functional recovery. In summary, it was observed that the amount of myocardial oxygen consumption during I/R could provide a reliable index of functional impairment in the heart. Magn Reson Med 51:835–842, 2004.


Molecular Cancer Research | 2010

Hsp27 Protects Adenocarcinoma Cells from UV-Induced Apoptosis by Akt and p21-Dependent Pathways of Survival

Ragu Kanagasabai; Krishnamurthy Karthikeyan; Kaushik Vedam; Wang Qien; Qianzheng Zhu; Govindasamy Ilangovan

Transcriptional activation of p53 target genes, due to DNA damage, causes either apoptosis or survival by cell cycle arrest and DNA repair. However, the regulators of the choice between cell death and survival signaling have not been completely elucidated. Here, we report that human adenocarcinoma cells (MCF-7) survive UV-induced DNA damage by heat shock protein 27 (Hsp27)–assisted Akt/p21 phosphorylation/translocation. Protein levels of the p53 target genes, such as p21, Bcl-2, p38MAPK, and Akt, showed a positive correlation to Hsp27 level during 48 hours postirradiation, whereas p53 expression increased initially but started decreasing after 12 hours. Hsp27 prevented the G1-S phase cell cycle arrest, observed after 8 hours of post–UV irradiation, and PARP-1 cleavage was inhibited. Conversely, silencing Hsp27 enhanced G1-S arrest and cell death. Moreover, use of either Hsp27 or Akt small interference RNA reduced p21 phosphorylation and enhanced its retention in nuclei even after 48 hours postirradiation, resulting in enhanced cell death. Our results showed that Hsp27 expression and its direct chaperoning interaction increases Akt stability, and p21 phosphorylation and nuclear-to-cytoplasm translocation, both essential effects for the survival of UV-induced DNA-damaged cells. We conclude that the role of Hsp27 in cancer is not only for enhanced p53 proteolysis per se, rather it is also a critical determinant in p21 phosphorylation and translocation. Mol Cancer Res; 8(10); 1399–412. ©2010 AACR.


Magnetic Resonance in Medicine | 2004

In vivo measurement and imaging of tumor oxygenation using coembedded paramagnetic particulates

Govindasamy Ilangovan; Anna Bratasz; Haiquan Li; Petra Schmalbrock; Jay L. Zweier; Periannan Kuppusamy

Tumor tissue oxygenation is an important parameter that is positively correlated to the chemo‐ or radiation treatment outcome of certain tumors. Hence, methods to accurately and noninvasively determine the concentration of oxygen (pO2) in tumors will be valuable. In this study, electron paramagnetic resonance (EPR) spectroscopy, utilizing microcrystalline particulates of lithium phthalocyanine (LiPc), was used to perform repeated measurements of pO2 as a function of tumor growth. We permanently embedded the particulates in the tumor by coimplanting them with RIF‐1 tumor cells during inoculation in mice. This procedure enabled repeated measurements of oxygen concentration in the tumor to be obtained for >2 weeks during its growth phase. The particulates were stable and nontoxic to the tumor cells. Both an in vitro clonogenic assay and an in vivo tumor growth rate examination in C3H mice showed no apparent effect on cell proliferation or tumor growth rate. The measurements indicated that the pO2 of the tumor decreased exponentially with tumor growth and reached hypoxic levels (∼4 mmHg) within 4 days after inoculation of the tumor cells. Spatial EPR imaging revealed a nonuniform distribution of the embedded particulates, which were localized mainly in the middle of the tumor volume. Oxygen mapping of the tumor, obtained by spectroscopic EPR imaging, showed significant variation of pO2 within the tumor. In summary, EPR spectroscopy and imaging with an embedded oximetry probe enabled accurate and repeated measurements of pO2 to be obtained in growing tumors under nonperturbing conditions. Magn Reson Med 52:650–657, 2004.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart

Karthikeyan Krishnamurthy; Kaushik Vedam; Ragu Kanagasabai; Lawrence J. Druhan; Govindasamy Ilangovan

Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis.


American Journal of Physiology-cell Physiology | 2008

Activation of Hsp90-eNOS and increased NO generation attenuate respiration of hypoxia-treated endothelial cells

Tennille Presley; Kaushik Vedam; Murugesan Velayutham; Jay L. Zweier; Govindasamy Ilangovan

Hypoxia induces various adoptive signaling in cells that can cause several physiological changes. In the present work, we have observed that exposure of bovine aortic endothelial cells (BAECs) to extreme hypoxia (1-5% O(2)) attenuates cellular respiration by a mechanism involving heat shock protein 90 (Hsp90) and endothelial nitric oxide (NO) synthase (eNOS), so that the cells are conditioned to consume less oxygen and survive in prolonged hypoxic conditions. BAECs, exposed to 1% O(2), showed a reduced respiration compared with 21% O(2)-maintained cells. Western blot analysis showed an increase in the association of Hsp90-eNOS and enhanced NO generation on hypoxia exposure, whereas there was no significant accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). The addition of inhibitors of Hsp90, phosphatidylinositol 3-kinase, and NOS significantly alleviated this hypoxia-induced attenuation of respiration. Thus we conclude that hypoxia-induced excess NO and its derivatives such as ONOO(-) cause inhibition of the electron transport chain and attenuate O(2) demand, leading to cell survival at extreme hypoxia. More importantly, such an attenuation is found to be independent of HIF-1alpha, which is otherwise thought to be the key regulator of respiration in hypoxia-exposed cells, through a nonphosphorylative glycolytic pathway. The present mechanistic insight will be helpful to understand the difference in the magnitude of endothelial dysfunction.


Methods in Enzymology | 2004

Microximetry: simultaneous determination of oxygen consumption and free radical production using electron paramagnetic resonance spectroscopy.

Govindasamy Ilangovan; Jay L. Zweier; Periannan Kuppusamy

Publisher Summary This chapter discusses simultaneous determination of oxygen consumption and free radical production using electron paramagnetic resonance (EPR) spectroscopy. EPR spectroscopy-based oximetry with a highly sensitive probe such as lithium phthalocyanine (LiPc) microcrystals is considered to be a technique with high accuracy and resolution, and lower sample requirement. Because the microximetry is based on EPR, an added advantage of this technique is that it is also possible to simultaneously study the free radicals generated, if any, in the enzymatic reactions or during the cellular respirations using a spin-trapping technique with an appropriate spin trap added to the medium. Thus both the oxygen consumption rate and the quantitation of free radicals can be obtained in a single experiment. The principle of electron paramagnetic resonance oximetry, particulate EPR oximetry probes, lithium phthalocyanine microcrystals as oxygen-measuring probe, simultaneous measurements of both oxygen and free radical concentrations, electrochemical synthesis and calibration of LiPc probes, and measurement of oxygen consumption and superoxide generation in human polymorphonuclear neutrophils arealso discussed.

Collaboration


Dive into the Govindasamy Ilangovan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tennille Presley

Winston-Salem State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge