Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arul Vadivel is active.

Publication


Featured researches published by Arul Vadivel.


Thorax | 2013

Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia

Maria Pierro; Lavinia Ionescu; Tiziana Montemurro; Arul Vadivel; Gaia Weissmann; Gavin Y. Oudit; Derek Emery; Sreedhar Bodiga; Farah Eaton; Bruno Péault; Fabio Mosca; Lorenza Lazzari; Bernard Thébaud

Background Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity and currently lacks efficient treatment. Rat bone marrow-derived mesenchymal stem cells (MSC) prevent lung injury in an oxygen-induced model of BPD. Human cord is an advantageous source of stem cells that is especially appealing for the treatment of neonatal diseases. The therapeutic benefit after established lung injury and long-term safety of cord-derived stem cells is unknown. Methods Human cord-derived perivascular cells (PCs) or cord blood-derived MSCs were delivered prophylactically or after established alveolar injury into the airways of newborn rats exposed to hyperoxia, a well-established BPD model. Results Rat pups exposed to hyperoxia showed the characteristic arrest in alveolar growth with air space enlargement and loss of lung capillaries. PCs and MSCs partially prevented and rescued lung function and structure. Despite therapeutic benefit, cell engraftment was low, suggesting that PCs and MSCs act via a paracrine effect. Accordingly, cell free-derived conditioned media from PCs and MSCs also exerted therapeutic benefit when used either prophylactically or therapeutically. Finally, long-term (6 months) assessment of stem cell or conditioned media therapy showed no adverse lung effects of either strategy, with persistent improvement in exercise capacity and lung structure. Conclusions Human umbilical cord-derived PCs and MSCs exert short- and long-term therapeutic benefit without adverse lung effects in this experimental model and offer new therapeutic options for lung diseases characterised by alveolar damage.


Stem Cells and Development | 2012

Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats.

Paul Waszak; Rajesh S. Alphonse; Arul Vadivel; Lavinia Ionescu; Farah Eaton; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity. Bone marrow derived-mesenchymal stem cells (BM-MSC) prevent lung injury in an O(2)-induced model of BPD. The low level of lung BM-MSC engraftment suggests alternate mechanisms-beyond cell replacement-to account for their therapeutic benefit. We hypothesized that BM-MSC prevent O(2)-induced BPD through a paracrine-mediated mechanism and that preconditioning of BM-MSC would further enhance this paracrine effect. To this end, conditioned medium (CM) from BM-MSC (MSCcm) or preconditioned CM harvested after 24 h of BM-MSC exposure to 95% O(2) (MSC-O2cm) were administrated for 21 days to newborn rats exposed to 95% O(2) from birth until postnatal day (P)14. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and exhibited signs of pulmonary hypertension (PH), assessed by echo-Doppler, right ventricular hypertrophy, and pulmonary artery medial wall thickness. Daily intraperitoneal administration of both CM preserved alveolar growth. MSC-O2cm exerted the most potent therapeutic benefit and also prevented PH. CM of lung fibroblasts (control cells) had no effect. MSCcm had higher antioxidant capacity than control fibroblast CM. Preconditioning did not increase the antioxidant capacity in MSC-O2cm but produced higher levels of the naturally occurring antioxidant stanniocalcin-1 in MSC-O2cm. Ex vivo preconditioning enhances the paracrine effect of BM-MSC and opens new therapeutic options for cell-based therapies. Ex vivo preconditioning may also facilitate the discovery of MSC-derived repair molecules.


Circulation | 2011

Antenatal Sildenafil Treatment Attenuates Pulmonary Hypertension in Experimental Congenital Diaphragmatic Hernia

Christina Luong; Juliana Rey-Perra; Arul Vadivel; Greg Gilmour; Yves Sauve; Debby P.Y. Koonen; Don Walker; Kathryn G. Todd; Pierre Gressens; Zamaneh Kassiri; Khurram Nadeem; Beverly C. Morgan; Farah Eaton; Jason R.B. Dyck; Stephen L. Archer; Bernard Thébaud

Background— Lung hypoplasia and persistent pulmonary hypertension of the newborn limit survival in congenital diaphragmatic hernia (CDH). Unlike other diseases resulting in persistent pulmonary hypertension of the newborn, infants with CDH are refractory to inhaled nitric oxide (NO). Nitric oxide mediates pulmonary vasodilatation at birth in part via cyclic GMP production. Phosphodiesterase type 5 (PDE5) limits the effects of NO by inactivation of cyclic GMP. Because of the limited success in postnatal management of CDH, we hypothesized that antenatal PDE5 inhibition would attenuate pulmonary artery remodeling in experimental nitrofen-induced CDH. Methods and Results— Nitrofen administered at embryonic day 9.5 to pregnant rats resulted in a 60% incidence of CDH in the offspring and recapitulated features seen in human CDH, including structural abnormalities (lung hypoplasia, decreased pulmonary vascular density, pulmonary artery remodeling, right ventricular hypertrophy), and functional abnormalities (decreased pulmonary artery relaxation in response to the NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide). Antenatal sildenafil administered to the pregnant rat from embryonic day 11.5 to embryonic day 20.5 crossed the placenta, increased fetal lung cyclic GMP and decreased active PDE5 expression. Antenatal sildenafil improved lung structure, increased pulmonary vessel density, reduced right ventricular hypertrophy, and improved postnatal NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide–induced pulmonary artery relaxation. This was associated with increased lung endothelial NO synthase and vascular endothelial growth factor protein expression. Antenatal sildenafil had no adverse effect on retinal structure/function and brain development. Conclusions— Antenatal sildenafil improves pathological features of persistent pulmonary hypertension of the newborn in experimental CDH and does not alter the development of other PDE5-expressing organs. Given the high mortality/morbidity of CDH, the potential benefit of prenatal PDE5 inhibition in improving the outcome for infants with CDH warrants further studies.


Circulation | 2014

Existence, Functional Impairment, and Lung Repair Potential of Endothelial Colony-Forming Cells in Oxygen-Induced Arrested Alveolar Growth

Rajesh S. Alphonse; Arul Vadivel; Moses Fung; William C. Shelley; Paul J. Critser; Lavinia Ionescu; Megan O’Reilly; Robin K. Ohls; Suzanne McConaghy; Farah Eaton; Shumei Zhong; Merv Yoder; Bernard Thébaud

Background— Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Methods and Results— Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth–arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood–derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Conclusions— Impaired ECFC function may contribute to arrested alveolar growth. Cord blood–derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.


Pediatric Research | 2010

L-Citrulline Attenuates Arrested Alveolar Growth and Pulmonary Hypertension in Oxygen-Induced Lung Injury in Newborn Rats

Arul Vadivel; Judy L. Aschner; G Rey-Parra; Jordan Magarik; Heng Zeng; Marshall Summar; Farah Eaton; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar development and complicated by pulmonary hypertension (PH). NO promotes alveolar growth. Inhaled NO (iNO) ameliorates the BPD phenotype in experimental models and in some premature infants. Arginosuccinate synthetase (ASS) and arginosuccinate lyase (ASL) convert l-citrulline to l-arginine; l-citrulline is regenerated during NO synthesis from l-arginine. Plasma levels of these NO precursors are low in PH. We hypothesized that l-citrulline prevents experimental O2-induced BPD in newborn rats. Rat pups were assigned from birth through postnatal day (P) 14 to room air (RA), RA + l-citrulline, 95% hyperoxia (BPD model), and 95%O2 + l-citrulline. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and decreased capillary density, mimicking human BPD. This was associated with decreased plasma l-arginine and l-citrulline concentrations on P7. l-Citrulline treatment significantly increased plasma l-arginine and l-citrulline concentrations and increased ASL protein expression in hyperoxia. l-Citrulline preserved alveolar and vascular growth in O2-exposed pups and decreased pulmonary arterial medial wall thickness (MWT) and right ventricular hypertrophy (RVH). Increased lung arginase (ARG) activity in O2-exposed pups was reversed by l-citrulline treatment. l-Citrulline supplementation prevents hyperoxia-induced lung injury and PH in newborn rats. l-Citrulline may represent a novel therapeutic alternative to iNO for prevention of BPD.


American Journal of Respiratory Cell and Molecular Biology | 2010

Adrenomedullin Promotes Lung Angiogenesis, Alveolar Development, and Repair

Arul Vadivel; Sameh Abozaid; Tim van Haaften; Monika Sawicka; Farah Eaton; Ming Chen; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) and emphysema are significant global health problems at the extreme stages of life. Both are characterized by alveolar simplification and abnormal distal airspace enlargement due to arrested development or loss of alveoli, respectively. Both lack effective treatments. Mechanisms that inhibit distal lung growth are poorly understood. Adrenomedullin (AM), a recently discovered potent vasodilator, promotes angiogenesis and has protective effects on the cardiovascular and respiratory system. Its role in the developing lung is unknown. We hypothesized that AM promotes lung angiogenesis and alveolar development. Accordingly, we report that lung mRNA expression of AM increases during normal alveolar development. In vivo, intranasal administration of the AM antagonist, AM22-52 decreases lung capillary density (12.4 +/- 1.5 versus 18 +/- 1.5 in control animals; P < 0.05) and impairs alveolar development (mean linear intercept, 52.3 +/- 1.5 versus 43.8 +/- 1.8 [P < 0.05] and septal counts 62.0 +/- 2.7 versus 90.4 +/- 3.5 [P < 0.05]) in neonatal rats, resulting in larger and fewer alveoli, reminiscent of BPD. This was associated with decreased lung endothelial nitric oxide synthase and vascular endothelial growth factor-A mRNA expression. In experimental oxygen-induced BPD, a model of arrested lung vascular and alveolar growth, AM attenuates arrested lung angiogenesis (vessel density, 6.9 +/- 1.1 versus 16.2 +/- 1.3, P < 0.05) and alveolar development (mean linear intercept, 51.9 +/- 3.2 versus 44.4 +/- 0.7, septal counts 47.6 +/- 3.4 versus 67.7 +/- 4.0, P < 0.05), an effect in part mediated by inhibition of apoptosis. AM also prevents pulmonary hypertension in this model, as assessed by decreased right ventricular hypertrophy and pulmonary artery medial wall thickness. Our findings suggest a role for AM during normal alveolar development. AM may have therapeutic potential in diseases associated with alveolar injury.


American Journal of Respiratory Cell and Molecular Biology | 2011

Activation of Akt Protects Alveoli from Neonatal Oxygen-Induced Lung Injury

Rajesh S. Alphonse; Arul Vadivel; Lavinia Coltan; Farah Eaton; Amy J. Barr; Jason R. B. Dyck; Bernard Thébaud

Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.


PLOS ONE | 2014

Exogenous Hydrogen Sulfide (H2S) Protects Alveolar Growth in Experimental O2-Induced Neonatal Lung Injury

Arul Vadivel; Rajesh S. Alphonse; Lavinia Ionescu; Desiree S. Machado; Megan O’Reilly; Farah Eaton; Al Haromy; Evangelos D. Michelakis; Bernard Thébaud

Background Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. Methods We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. Results In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. Conclusions H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.


American Journal of Respiratory Cell and Molecular Biology | 2013

Hypoxia-Inducible Factors Promote Alveolar Development and Regeneration

Arul Vadivel; Rajesh S. Alphonse; Nicholas Etches; Timothy van Haaften; Jennifer J. P. Collins; Megan O’Reilly; Farah Eaton; Bernard Thébaud

Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.


American Journal of Respiratory and Critical Care Medicine | 2012

Critical Role of the Axonal Guidance Cue EphrinB2 in Lung Growth, Angiogenesis, and Repair

Arul Vadivel; Tim van Haaften; Rajesh S. Alphonse; Gloria-Juliana Rey-Parra; Lavinia Ionescu; Al Haromy; Farah Eaton; Evangelos D. Michelakis; Bernard Thébaud

RATIONALE Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.

Collaboration


Dive into the Arul Vadivel's collaboration.

Top Co-Authors

Avatar

Bernard Thébaud

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shumei Zhong

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin K. Ohls

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge